Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mouse differentiating spermatogonia can generate germinal stem cells in vivo

Abstract

In adults, stem cells are responsible for the maintenance of many actively renewing tissues, such as haematopoietic, skin, gut and germinal tissues. These stem cells can self-renew or be committed to becoming progenitors. Stem-cell commitment is thought to be irreversible but in male and female Drosophila melanogaster, it was shown recently that differentiating germ cells can revert to functional stem cells that can restore germinal lineage1,2. Whether progenitors are also able to generate stem cells in mammals remains unknown. Here we show that purified mouse spermatogonial progenitors committed to differentiation can generate functional germinal stem cells that can repopulate germ-cell-depleted testes when transplanted into adult mice. We found that GDNF, a key regulator of the stem-cell niche, and FGF2 are able to reprogram in vitro spermatogonial progenitors for reverse differentiation. This study supports the emerging concept that the stem-cell identity is not restricted in adults to a definite pool of cells that self-renew, but that stemness could be acquired by differentiating progenitors after tissue injury and throughout life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adult c-kit-positive spermatogonial progenitors selected by MACS have the potential to regenerate spermatogenesis after transplantation in germ-cell depleted testis.
Figure 2: Flow cytometric analysis of c-kit and stem-cell activity in SPα-6+c-kit−/low subpopulation of wild-type adult testes cells.
Figure 3: Adult SPα6+c-kit+ cells differentiating spermatogonia have the potential to regenerate spermatogenesis after transplantation.
Figure 4: Differentiating c-kit-positive spermatogonia de-differentiate and act as functional GSCs after transplantation.
Figure 5: Chemoattraction of c-kit positive spermatogonia by KitL in vitro, and generation of germ-cell clusters with long-term clonogenic activity from c-kit positive spermatogonia in culture in presence of GDNF and FGF2.

Similar content being viewed by others

References

  1. Kai, T. & Spradling, A. Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature 428, 564–569 (2004).

    Article  CAS  Google Scholar 

  2. Brawley, C. & Matunis, E. Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science 304, 1331–1334 (2004).

    Article  CAS  Google Scholar 

  3. de Rooij, D. G. Proliferation and differentiation of spermatogonial stem cells. Reproduction 121, 347–354 (2001).

    Article  CAS  Google Scholar 

  4. Schrans-Stassen, B. H., van de Kant, H. J., de Rooij, D. G. & van Pelt, A. M. Differential expression of c-kit in mouse undifferentiated and differentiating type A spermatogonia. Endocrinology 140, 5894–5900 (1999).

    Article  CAS  Google Scholar 

  5. Ohta, H., Yomogida, K., Dohmae, K. & Nishimune, Y. Regulation of proliferation and differentiation in spermatogonial stem cells: the role of c-kit and its ligand SCF. Development 127, 2125–2131 (2000).

    CAS  PubMed  Google Scholar 

  6. Yoshida, S. et al. Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis. Dev. Biol. 269, 447–458 (2004).

    Article  CAS  Google Scholar 

  7. Raverot, G., Weiss, J., Park, S. Y., Hurley, L. & Jameson, J. L. Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Dev. Biol. 283, 215–225 (2005).

    Article  CAS  Google Scholar 

  8. Tokuda, M., Kadokawa, Y., Kurahashi, H. & Marunouchi, T. CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes. Biol. Reprod. 76, 130–141 (2007).

    Article  CAS  Google Scholar 

  9. Shinohara, T., Orwig, K. E., Avarbock, M. R. & Brinster, R. L. Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc. Natl Acad. Sci. USA 97, 8346–8351 (2000).

    Article  CAS  Google Scholar 

  10. Bastos, H. et al. Flow cytometric characterization of viable meiotic and post-meiotic cells by Hoechst 33342 in mouse spermatogenesis. Cytometry A 65, 40–49 (2005).

    Article  Google Scholar 

  11. Lassalle, B. et al. 'Side population' cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development 131, 479–487 (2004).

    Article  CAS  Google Scholar 

  12. Zhang, X., Ebata, K. T. & Nagano, M. C. Genetic analysis of the clonal origin of regenerating mouse spermatogenesis following transplantation. Biol. Reprod. 69, 1872–1878 (2003).

    Article  CAS  Google Scholar 

  13. Shinohara, T., Avarbock, M. R. & Brinster, R. L. beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc. Natl Acad. Sci. USA 96, 5504–5509 (1999).

    Article  CAS  Google Scholar 

  14. Kubota, H., Avarbock, M. R. & Brinster, R. L. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol. Reprod. 71, 722–731 (2004).

    Article  CAS  Google Scholar 

  15. Shinohara, T., Orwig, K. E., Avarbock, M. R. & Brinster, R. L. Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc. Natl Acad. Sci. USA 98, 6186–6191 (2001).

    Article  CAS  Google Scholar 

  16. Falciatori, I. et al. Identification and enrichment of spermatogonial stem cells displaying side-population phenotype in immature mouse testis. FASEB J. 18, 376–378 (2004).

    Article  CAS  Google Scholar 

  17. Kubota, H., Avarbock, M. R. & Brinster, R. L. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc. Natl Acad. Sci. USA 100, 6487–6492 (2003).

    Article  CAS  Google Scholar 

  18. Chen, C. et al. ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature 436, 1030–1034 (2005).

    Article  CAS  Google Scholar 

  19. Meng, X. et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493 (2000).

    Article  CAS  Google Scholar 

  20. Bedell, M. A. & Mahakali Zama, A. Genetic analysis of Kit ligand functions during mouse spermatogenesis. J. Androl. 25, 188–199 (2004).

    Article  CAS  Google Scholar 

  21. Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–637 (2002).

    Article  CAS  Google Scholar 

  22. Kubota, H., Avarbock, M. R. & Brinster, R. L. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl Acad. Sci. USA 101, 16489–16494 (2004).

    Article  CAS  Google Scholar 

  23. Yeh, J. R., Zhang, X. & Nagano, M. C. Establishment of a short-term in vitro assay for mouse spermatogonial stem cells. Biol. Reprod. 77, 897–904 (2007).

    Article  CAS  Google Scholar 

  24. de Rooij, D. G. & Grootegoed, J. A. Spermatogonial stem cells. Curr. Opin. Cell Biol. 10, 694–701 (1998).

    Article  CAS  Google Scholar 

  25. Nakagawa, T., Nabeshima, Y. & Yoshida, S. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev. Cell 12, 195–206 (2007).

    Article  CAS  Google Scholar 

  26. Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250–264 (2008).

    Article  CAS  Google Scholar 

  27. Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 26, 101–106 (2008).

    Google Scholar 

  28. Ryu, B. Y., Orwig, K. E., Oatley, J. M., Avarbock, M. R. & Brinster, R. L. Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells 24, 1505–1511 (2006).

    Article  CAS  Google Scholar 

  29. Akala, O. O. et al. Long-term haematopoietic reconstitution by Trp53−/−p16Ink4a−/−p19Arf−/− multipotent progenitors. Nature 453, 228–232 (2008).

    Article  CAS  Google Scholar 

  30. Guan, K. et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199–1203 (2006).

    Article  CAS  Google Scholar 

  31. Seandel, M. et al. Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449, 346–350 (2007).

    Article  CAS  Google Scholar 

  32. Boulanger, C. A., Mack, D. L., Booth, B. W. & Smith, G. H. Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proc. Natl Acad. Sci. USA 104, 3781–3786 (2007).

    Article  Google Scholar 

  33. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P.H. Romeo for critical review of the manuscript and helpful comments. We thank M. Okabe for the generous gift of the EGFP transgenic mice; S. Leblay and V. Neuville for their technical assistance in the animal facilities, and T. Andrieu for assistance with Aria, LSR and LSRII. This work was supported in part by a grant from Electricité De France.

Author information

Authors and Affiliations

Authors

Contributions

V.B. and B.L. contributed equally to the experimental work, with help from M.C., L.R.and P.F.; V.B., B.L., L.R. and P.F. conceived and designed the experiments; J.P.L. provided valuable material and initiated the breeding of the EGFP mice; F.L.P., J.T., I.A., B.L. and L.R. revised the manuscript. All authors participated in data analysis. P.F. coordinated the study; P.F. and V.B. wrote the paper.

Corresponding author

Correspondence to Pierre Fouchet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 341 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barroca, V., Lassalle, B., Coureuil, M. et al. Mouse differentiating spermatogonia can generate germinal stem cells in vivo. Nat Cell Biol 11, 190–196 (2009). https://doi.org/10.1038/ncb1826

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1826

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing