Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction between TAK1–TAB1–TAB2 and RCAN1–calcineurin defines a signalling nodal control point

Abstract

The calcium-activated protein phosphatase calcineurin is controlled by regulator of calcineurin (RCAN) in organisms ranging from yeast to mammals. Here we performed a yeast two-hybrid screen with RCAN1 as bait, identifying TAK1 binding protein 2 (TAB2) as an interacting partner. TAB2 interacted directly with RCAN1 in vitro and in vivo, recruiting TAK1, TAB1 and calcineurin, forming a macromolecular signalling complex. Overexpression of TAK1 and TAB1, or active TAK1ΔN, promoted direct phosphorylation of RCAN1 in vitro and in vivo. TAK1 phosphorylated RCAN1 at Ser 94 and Ser 136, converting RCAN1 from an inhibitor to a facilitator of calcineurin–NFAT signalling, and enhancing NFATc1 nuclear translocation, NFAT transcriptional activation and the hypertrophic growth of cultured cardiomyocytes. The TAK1–TAB1–TAB2 and the calcineurin–NFAT signalling modules did not interact in Rcan1/2- or Tab2-deficient mouse embryonic fibroblast (MEF) cultures. Calcineurin activation also dephosphorylated and inhibited TAK1 and TAB1, an effect that was absent in Rcan1/2 deficient MEFs. Functionally, TAK1 was indispensable for the cardiomyocyte growth response induced by pro-hypertrophic stimuli through calcineurin. These results describe a signalling relationship between two central regulatory pathways in which TAK1–TAB1–TAB2 selectively induces calcineurin–NFAT signalling through direct phosphorylation of RCAN1, while calcineurin activation diminishes TAK1 signalling by dephosphorylation of TAK1 and TAB1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RCAN1 physically interacts with TAB2.
Figure 2: TAK1 phosphorylates RCAN1 at Ser 94 and 136.
Figure 3: TAK1 induces calcineurin–NFAT signalling in cardiomyocytes.
Figure 4: Calcineurin–RCAN1 is required for TAK1-induced hypertrophic growth in cardiomyocytes.
Figure 5: Calcineurin reciprocally regulates TAK1 activity.

Similar content being viewed by others

References

  1. Wu, H., Peisley, A., Graef, I. A. & Crabtree G. R. NFAT signalling and the invention of vertebrates. Trends Cell Biol. 17, 251–260 (2007).

    Article  CAS  Google Scholar 

  2. Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).

    Article  CAS  Google Scholar 

  3. Molkentin, J. D. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998).

    Article  CAS  Google Scholar 

  4. Hilioti, Z. & Cunningham, K. W. The RCN family of calcineurin regulators. Biochem. Biophys. Res. Commun. 311, 1089–1093 (2003).

    Article  CAS  Google Scholar 

  5. Davies, K. J. et al. Renaming the DSCR1/Adapt78 gene family as RCAN: regulators of calcineurin. FASEB J. 21, 3023–3028 (2007).

    Article  CAS  Google Scholar 

  6. Chan, B., Greenan, G., McKeon, F. & Ellenberger, T. Identification of a peptide fragment of DSCR1 that competitively inhibits calcineurin activity in vitro and in vivo. Proc. Natl Acad. Sci. USA 102, 13075–13080 (2005).

    Article  CAS  Google Scholar 

  7. Hilioti, Z. et al. GSK-3 kinases enhance calcineurin signalling by phosphorylation of RCNs. Genes Dev. 18, 35–47 (2004).

    Article  CAS  Google Scholar 

  8. Kingsbury, T. J. & Cunningham, K. W. A conserved family of calcineurin regulators. Genes Dev. 14, 1595–1604 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gorlach, J. et al. Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, in Cryptococcus neoformans. EMBO J. 19, 3618–3629 (2000).

    Article  CAS  Google Scholar 

  10. Sanna, B. et al. Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. Proc. Natl Acad. Sci. USA 103, 7327–7332 (2006).

    Article  CAS  Google Scholar 

  11. Vega, R. B. et al. Dual roles of modulatory calcineurin-interacting protein 1 in cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 100, 669–674 (2003).

    Article  CAS  Google Scholar 

  12. Genesca, L. et al. Phosphorylation of calcipressin 1 increases its ability to inhibit calcineurin and decreases calcipressin half-life. Biochem. J. 374, 567–575 (2003).

    Article  CAS  Google Scholar 

  13. Takaesu, G. et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell 5, 649–658 (2000).

    Article  CAS  Google Scholar 

  14. Yamaguchi, K. et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 270, 2008–2011 (1995).

    Article  CAS  Google Scholar 

  15. Besse, A. et al. TAK1-dependent signalling requires functional interaction with TAB2/TAB3. J. Biol. Chem. 282, 3918–3928 (2007).

    Article  CAS  Google Scholar 

  16. Shibuya, H. et al. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 272, 1179–1182 (1996).

    Article  CAS  Google Scholar 

  17. Ninomiya-Tsuji J. et al. The kinase TAK1 can activate the NIK-I κB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252–256 (1999).

    Article  CAS  Google Scholar 

  18. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  Google Scholar 

  19. Zhang, D. et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nature Med. 6, 556–563 (2000).

    Article  CAS  Google Scholar 

  20. Vega, R. B., Yang, J., Rothermel, B. A., Bassel-Duby, R. & Williams R. S. Multiple domains of MCIP1 contribute to inhibition of calcineurin activity. J. Biol. Chem. 277, 30401–30407 (2002).

    Article  CAS  Google Scholar 

  21. Rothermel, B. et al. A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signalling. J. Biol. Chem. 275, 8719–8725 (2000).

    Article  CAS  Google Scholar 

  22. Rothermel, B. A. et al. Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc. Natl Acad. Sci. USA 98, 3328–3333 (2001).

    Article  CAS  Google Scholar 

  23. Watkins, S. J., Jonker, L. & Arthur, H. M. A direct interaction between TGFβ activated kinase 1 and the TGFβ type II receptor: implications for TGFβ signalling and cardiac hypertrophy. Cardiovasc. Res. 69, 432–439 (2006).

    Article  CAS  Google Scholar 

  24. Tung, H. Y., Wangm W. & Chan, C. S. Regulation of chromosome segregation by Glc8p, a structural homologue of mammalian inhibitor 2 that functions as both an activator and an inhibitor of yeast protein phosphatase 1. Mol Cell Biol. 15, 6064–6074 (1995).

    Article  CAS  Google Scholar 

  25. Greengard, P., Allen. P. B. & Nairn, A. C. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23, 435–447 (1999).

    Article  CAS  Google Scholar 

  26. Cohen, P. T. Protein phosphatase 1 — targeted in many directions. J. Cell. Sci. 115, 241–256 (2002).

    CAS  PubMed  Google Scholar 

  27. Abbasi, S. et al. Protein kinase-mediated regulation of calcineurin through the phosphorylation of modulatory calcineurin-interacting protein 1. J. Biol. Chem. 281, 7717–7726 (2006).

    Article  CAS  Google Scholar 

  28. Liu, Q., Wilkins, B. J., Lee, Y. J., Ichijo, H. & Molkentin, J. D. Direct interaction and reciprocal regulation between ASK1 and calcineurin-NFAT control cardiomyocyte death and growth. Mol. Cell. Biol. 26, 3785–3797 (2006).

    Article  CAS  Google Scholar 

  29. Liang, Q. et al. The transcription factor GATA4 is activated by extracellular signal-regulated kinase 1- and 2-mediated phosphorylation of serine 105 in cardiomyocytes. Mol. Cell. Biol. 21, 7460–7469 (2001).

    Article  CAS  Google Scholar 

  30. Godeny, M. D. et al. The N-terminal SH2 domain of the tyrosine phosphatase, SHP-2, is essential for Jak2-dependent signalling via the angiotensin II type AT1 receptor. Cell. Signal. 19, 600–609 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Yang Xia for the generous gift of the S108/112A mutant RCAN1 plasmid, and Jun Tsuji for providing the Tak1−/− MEFs originated from Akira's laboratory. This work was supported by grants from the National Institutes of Health (J.D.M), the Fondation Leducq (Heart failure network grant to J.D.M), and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

Q.L. performed the experiments; J.O.M. supervised all work and data interpretation; J.C.B. performed mass spectrometry of phosphorylated RCAN1.

Corresponding author

Correspondence to Jeffery D. Molkentin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Busby, J. & Molkentin, J. Interaction between TAK1–TAB1–TAB2 and RCAN1–calcineurin defines a signalling nodal control point. Nat Cell Biol 11, 154–161 (2009). https://doi.org/10.1038/ncb1823

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1823

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing