Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling

Abstract

RME-1/EHD1 (receptor mediated endocytosis/Eps15 homology-domain containing 1) family proteins are key residents of the recycling endosome, which are required for endosome-to-plasma membrane transport in Caenorhabditis elegans and mammals. Recent studies suggest similarities between the RME-1/EHD proteins and the Dynamin GTPase superfamily of mechanochemical pinchases, which promote membrane fission. Here we show that endogenous C. elegans AMPH-1, the only C. elegans member of the Amphiphysin/BIN1 family of BAR (Bin1-Amphiphysin-Rvs161p/167p)-domain-containing proteins, colocalizes with RME-1 on recycling endosomes in vivo, that amph-1-deletion mutants are defective in recycling endosome morphology and function, and that binding of AMPH-1 Asn-Pro-Phe(Asp/Glu) sequences to the RME-1 EH-domain promotes the recycling of transmembrane cargo. We also show a requirement for human BIN1 (also known as Amphiphysin 2) in EHD1-regulated endocytic recycling. In vitro, we find that purified recombinant AMPH-1–RME-1 complexes produce short, coated membrane tubules that are qualitatively distinct from those produced by either protein alone. Our results indicate that AMPH-1 and RME-1 cooperatively regulate endocytic recycling, probably through functions required for the production of cargo carriers that exit the recycling endosome for the cell surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AMPH-1 physically interacts with RME-1.
Figure 2: AMPH-1 co-localizes with RME-1 and SDPN-1 on recycling endosomes.
Figure 3: C. elegans amph-1 mutants show abnormal trafficking of recycling cargo and morphologically abnormal recycling endosomes.
Figure 4: AMPH-1 function in endocytic recycling requires interaction with RME-1.
Figure 5: RNAi-mediated depletion of human Bin1 impairs transferrin recycling and disrupts mRme-1/EHD1-positive recycling endosome tubules.
Figure 6: Membrane binding and tubulation by AMPH-1 and RME-1 in vitro.
Figure 7: In vitro membrane binding and tubulation by AMPH-1 and RME-1 to PtdIns-containing liposomes.
Figure 8: Nucleotide effects on RME-1- and AMPH-1-mediated liposome tubulation.

Similar content being viewed by others

References

  1. Grant, B. et al. Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nature Cell Biol. 3, 573–579 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lin, S. X., Grant, B., Hirsh, D. & Maxfield, F. R. Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nature Cell Biol. 3, 567–572 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Caplan, S. et al. A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane. EMBO J. 21, 2557–2567 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee, D. W. et al. ATP binding regulates oligomerization and endosome association of RME-1 family proteins. J. Biol. Chem. 280, 17213–17220 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Naslavsky, N., Rahajeng, J., Sharma, M., Jovic, M. & Caplan, S. Interactions between EHD proteins and Rab11-FIP2: a role for EHD3 in early endosomal transport. Mol. Biol. Cell 17, 163–177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharma, M., Naslavsky, N. & Caplan, S. A role for EHD4 in the regulation of early endosomal transport. Traffic 9, 995–1018 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shao, Y. et al. Pincher, a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes. J. Cell Biol. 157, 679–691 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guilherme, A. et al. EHD2 and the novel EH domain binding protein EHBP1 couple endocytosis to the actin cytoskeleton. J. Biol.Chem. 279, 10593–10605 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Daumke, O. et al. Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature 449, 923–927 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Sever, S. Dynamin and endocytosis. Curr. Opin. Cell Biol. 14, 463–467 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Roux, A. & Antonny, B. The long and short of membrane fission. Cell 135, 1163–1165 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Salcini, A. E. et al. Binding specificity and in vivo targets of the EH domain, a novel protein–protein interaction module. Genes Dev. 11, 2239–2249 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grant, B. D. & Caplan, S. Mechanisms of EHD/RME-1 protein function in endocytic transport. Traffic (2008).

  14. Kieken, F., Jovic, M., Naslavsky, N., Caplan, S. & Sorgen, P. L. EH domain of EHD1. J. Biomol. NMR 39, 323–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Takei, K., Slepnev, V. I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nature Cell Biol. 1, 33–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. David, C., McPherson, P. S., Mundigl, O. & de Camilli, P. A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc. Natl Acad. Sci. USA 93, 331–335 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, A. et al. A novel requirement for C. elegans Alix/ALX-1 in RME-1-mediated membrane transport. Curr. Biol. 17, 1913–1924 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sato, K. et al. Differential requirements for clathrin in receptor-mediated endocytosis and maintenance of synaptic vesicle pools. Proc. Natl Acad. Sci. USA 106, 1139–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, C. C. et al. RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol. Biol. Cell 17, 1286–1297 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, B. & Zelhof, A. C. Amphiphysins: raising the BAR for synaptic vesicle recycling and membrane dynamics. Bin-Amphiphysin-Rvsp. Traffic 3, 452–460 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Razzaq, A. et al. Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev. 15, 2967–2979 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zelhof, A. C. et al. Drosophila Amphiphysin is implicated in protein localization and membrane morphogenesis but not in synaptic vesicle endocytosis. Development 128, 5005–5015 (2001).

    CAS  PubMed  Google Scholar 

  23. Leventis, P. A. et al. Drosophila Amphiphysin is a post-synaptic protein required for normal locomotion but not endocytosis. Traffic 2, 839–850 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Grabs, D. et al. The SH3 domain of amphiphysin binds the proline-rich domain of dynamin at a single site that defines a new SH3 binding consensus sequence. J. Biol Chem. 272, 13419–13425 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Burack, M. A., Silverman, M. A. & Banker, G. The role of selective transport in neuronal protein sorting. Neuron 26, 465–472 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Naslavsky, N., Weigert, R. & Donaldson, J. G. Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. Mol. Biol. Cell 5, 3542–3552 (2004).

    Article  Google Scholar 

  27. Naslavsky, N., Weigert, R. & Donaldson, J. G. Convergence of non-clathrin- and clathrin-derived endosomes involves Arf6 inactivation and changes in phosphoinositides. Mol. Biol. Cell 14, 417–431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Farsad, K. et al. A putative role for intramolecular regulatory mechanisms in the adaptor function of amphiphysin in endocytosis. Neuropharmacology 45, 787–796 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. McMahon, H. T., Wigge, P. & Smith, C. Clathrin interacts specifically with amphiphysin and is displaced by dynamin. FEBS Lett. 413, 319–322 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Olesen, L. E. et al. Solitary and repetitive binding motifs for the AP2 complex alpha-appendage in amphiphysin and other accessory proteins. J. Biol. Chem. 283, 5099–5109 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Owen, D. J. et al. Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. EMBO J. 17, 5273–5285 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Slepnev, V. I. & De Camilli, P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nature Rev. Neurosci. 1, 161–172 (2000).

    Article  CAS  Google Scholar 

  33. Yoshida, Y. et al. The stimulatory action of amphiphysin on dynamin function is dependent on lipid bilayer curvature. EMBO J. 23, 3483–3491 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, E. et al. Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297, 1193–1196 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Muller, A. J. et al. Targeted disruption of the murine Bin1/Amphiphysin II gene does not disable endocytosis but results in embryonic cardiomyopathy with aberrant myofibril formation. Mol. Cell. Biol. 23, 4295–4306 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jovic, M., Kieken, F., Naslavsky, N., Sorgen, P. L. & Caplan, S. Eps15 homology domain 1-associated tubules contain phosphatidylinositol-4-phosphate and phosphatidylinositol-(4, 5)-bisphosphate and are required for efficient recycling. Mol. Biol. Cell 20, 2731–2743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamashiro, D. J., Tycko, B., Fluss, S. R. & Maxfield, F. R. Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell 37, 789–800 (1984).

    Article  CAS  PubMed  Google Scholar 

  38. Takei, K., Slepnev, V. I. & De Camilli, P. Interactions of dynamin and amphiphysin with liposomes. Methods Enzymol. 329, 478–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Brown, F. D., Rozelle, A. L., Yin, H. L., Balla, T. & Donaldson, J. G. Phosphatidylinositol 4, 5-bisphosphate and Arf6-regulated membrane traffic. J. Cell Biol. 154, 1007–1017 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pucadyil, T. J. & Schmid, S. L. Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell 135, 1263–1275 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bashkirov, P. V. et al. GTPase cycle of Dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell (2008).

  42. Braun, A. et al. EHD proteins associate with syndapin I and II and such interactions play a crucial role in endosomal recycling. Mol. Biol. Cell 16, 3642–3658 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nature Cell Biol. 9, 1066–1073 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Choi, J. Y., Stukey, J., Hwang, S. Y. & Martin, C. E. Regulatory elements that control transcription activation and unsaturated fatty acid-mediated repression of the Saccharomyces cerevisiae OLE1 gene. J. Biol. Chem. 271, 3581–3589 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Grant, B. & Greenwald, I. Structure, function, and expression of SEL-1, a negative regulator of LIN-12 and GLP-1 in C. elegans. Development 124, 637–644 (1997).

    CAS  PubMed  Google Scholar 

  48. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954 (1967).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. McPherson, Z. Zhou, B. Kay, G. Prandergast and S. Mitani for important reagents. The monoclonal against RME-1 was made at Washington University School of Medicine and funded by Grant R24RR22234 (PI M. L. Nonet). We also thank C. Martin, P. Yurchenco, D. Winkelman, F. Matsumura, S. Yamashiro and S. H. deGregori for sharing their instruments, reagents and protocols; A. Shi for the construction and gift of the GFP–SDPN-1 strain; R. Patel and V. Starovoytov for expert assistance with electron microscopy protocols and Z. Pan for usage of the confocal microscopy facility; O. Daumke and T. Pucadyil for discussions and advice on liposome tubulation experiments; P. Schweinsberg for technical assistance. This work was supported by NIH Grants GM67237 to B.D.G and GM074876 to S.C., a NJCSCR Graduate Fellowship 06-2915-SCR-E-0, an Anne B. and James B. Leathem Fellowship, a McCallum Fund Fellowship Grant to S.P., an American Heart Association student fellowship to M.S. and a Rutgers Summer Undergraduate Research Fellowship (SURF) to K.P.

Author information

Authors and Affiliations

Authors

Contributions

S.P. participated in experimental design, performed the C. elegans-related experiments and the biochemical and liposome experiments (Figs 1, 2, 3, 4, 6, 7, 8 and Supplementary Information, Figs S1–5 and S7) and wrote the manuscript. M.S. performed the mammalian cell experiments (Fig. 5 and Supplementary Information, Fig. S6) and helped to write those sections of the manuscript. K.P. contributed to developing some strains used in the study. S.C. designed the mammalian cell experiments. C.M.C. designed the experiments related to liposome biochemistry and trained S.P. to do those experiments. B.D.G. designed the experiments, trained S.P. in all C. elegans experiments and wrote the paper.

Corresponding author

Correspondence to Barth D. Grant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1871 kb)

Supplementary Information

Supplementary Table 1 (XLS 21 kb)

Supplementary Information

Supplementary Table 2 (XLS 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pant, S., Sharma, M., Patel, K. et al. AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat Cell Biol 11, 1399–1410 (2009). https://doi.org/10.1038/ncb1986

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1986

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing