Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development

Abstract

The planar cell polarity (PCP) signalling pathway is essential for embryonic development because it governs diverse cellular behaviours, and 'core PCP' proteins, such as Dishevelled and Frizzled, have been extensively characterized1,2,3,4. By contrast, the 'PCP effector' proteins, such as Intu and Fuz, remain largely unstudied5,6. These proteins are essential for PCP signalling, but they have never been investigated in mammals and their cell biological activities remain entirely unknown. We report here that Fuz mutant mice show neural tube defects, skeletal dysmorphologies and Hedgehog signalling defects stemming from disrupted ciliogenesis. Using bioinformatics and imaging of an in vivo mucociliary epithelium, we established a central role for Fuz in membrane trafficking, showing that Fuz is essential for trafficking of cargo to basal bodies and to the apical tips of cilia. Fuz is also essential for exocytosis in secretory cells. Finally, we identified a Rab-related small GTPase as a Fuz interaction partner that is also essential for ciliogenesis and secretion. These results are significant because they provide new insights into the mechanisms by which developmental regulatory systems such as PCP signalling interface with fundamental cellular systems such as the vesicle trafficking machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mice lacking a functional Fuz gene have multiple developmental defects.
Figure 2: RSG1 controls ciliogenesis and secretion.
Figure 3: Homology modelling, network predictions and experimental validation suggest a trafficking function for Fuz.
Figure 4: Fuz and RSG1 control trafficking to basal bodies as well as to the tips of cilia.
Figure 5: Knockdown of Fuz disrupts exocytosis in mucus-secreting cells.

Similar content being viewed by others

References

  1. Wallingford, J. B. Planar cell polarity, ciliogenesis and neural tube defects. Hum. Mol. Genet. 15, R227–R234 (2006).

    Article  CAS  Google Scholar 

  2. Karner, C., Wharton, K. A., Jr. & Carroll, T. J. Planar cell polarity and vertebrate organogenesis. Semin. Cell Dev. Biol. 17, 194–203 (2006).

    Article  Google Scholar 

  3. Simons, M. & Mlodzik, M. Planar cell polarity signaling: from fly development to human disease. Annu. Rev. Genet. 42, 517–540 (2008).

    Article  CAS  Google Scholar 

  4. Collier, S. & Gubb, D. Drosophila tissue polarity requires the cell-autonomous activity of the fuzzy gene, which encodes a novel transmembrane protein. Development 124, 4029–4037 (1997).

    CAS  PubMed  Google Scholar 

  5. Lee, H. & Adler, P. N. The function of the frizzled pathway in the Drosophila wing is dependent on inturned and fuzzy. Genetics 160, 1535–1547 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Park, T. J., Haigo, S. L. & Wallingford, J. B. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nature Genet. 38, 303–311 (2006).

    Article  CAS  Google Scholar 

  7. Park, T. J., Mitchell, B. J., Abitua, P. B., Kintner, C. & Wallingford, J. B. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nature Genet. 40, 871–879 (2008).

    Article  CAS  Google Scholar 

  8. Hamblet, N. S. et al. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development 129, 5827–5838 (2002).

    Article  CAS  Google Scholar 

  9. Kibar, Z. et al. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nature Genet. 28, 251–255 (2001).

    Article  CAS  Google Scholar 

  10. Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    Article  CAS  Google Scholar 

  11. Ross, A. J. et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nature Genet. 37, 1135–1140 (2005).

    Article  CAS  Google Scholar 

  12. Ansley, S. J. et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 425, 628–633 (2003).

    Article  CAS  Google Scholar 

  13. Sharma, N., Berbari, N. F. & Yoder, B. K. Ciliary dysfunction in developmental abnormalities and diseases. Curr. Top. Dev. Biol. 85, 371–427 (2008).

    Article  CAS  Google Scholar 

  14. Smith, U. M. et al. The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat. Nature Genet. 38, 191–196 (2006).

    Article  CAS  Google Scholar 

  15. Beales, P. L. et al. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nature Genet. 39, 727–729 (2007).

    Article  CAS  Google Scholar 

  16. Takeda, S. et al. Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A−/− mice analysis. J. Cell Biol. 145, 825–836 (1999).

    Article  CAS  Google Scholar 

  17. Rual, J. F. et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  Google Scholar 

  18. Hayes, J. M. et al. Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development. Dev. Biol. 312, 115–130 (2007).

    Article  CAS  Google Scholar 

  19. Pena-Castillo, L. et al. A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biol. 9 (Suppl 1), S2 (2008).

    Article  Google Scholar 

  20. Ginalski, K. Comparative modeling for protein structure prediction. Curr. Opin. Struct. Biol. 16, 172–177 (2006).

    Article  CAS  Google Scholar 

  21. Hagiwara, H., Aoki, T., Ohwada, N. & Fujimoto, T. Development of striated rootlets during ciliogenesis in the human oviduct epithelium. Cell Tissue Res. 290, 39–42 (1997).

    Article  CAS  Google Scholar 

  22. Rossi, V. et al. Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators. Trends Biochem. Sci. 29, 682–688 (2004).

    Article  CAS  Google Scholar 

  23. Jang, S. B. et al. Crystal structure of SEDL and its implications for a genetic disease spondyloepiphyseal dysplasia tarda. J. Biol. Chem. 277, 49863–49869 (2002).

    Article  CAS  Google Scholar 

  24. Gedeon, A. K. et al. Identification of the gene (SEDL) causing X-linked spondyloepiphyseal dysplasia tarda. Nature Genet. 22, 400–404 (1999).

    Article  CAS  Google Scholar 

  25. Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R. & Owen, D. J. Molecular architecture and functional model of the endocytic AP2 complex. Cell 109, 523–535 (2002).

    Article  CAS  Google Scholar 

  26. Pryor, P. R. et al. Molecular basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell 134, 817–827 (2008).

    Article  CAS  Google Scholar 

  27. Dougherty, G. W. et al. CLAMP, a novel microtubule-associated protein with EB-type calponin homology. Cell Motil. Cytoskeleton 62, 141–156 (2005).

    Article  CAS  Google Scholar 

  28. Chan, S. W., Fowler, K. J., Choo, K. H. & Kalitsis, P. Spef1, a conserved novel testis protein found in mouse sperm flagella. Gene 353, 189–199 (2005).

    Article  CAS  Google Scholar 

  29. Fariss, R. N., Molday, R. S., Fisher, S. K. & Matsumoto, B. Evidence from normal and degenerating photoreceptors that two outer segment integral membrane proteins have separate transport pathways. J. Comp. Neurol. 387, 148–156 (1997).

    Article  CAS  Google Scholar 

  30. Yang, J. & Li, T. The ciliary rootlet interacts with kinesin light chains and may provide a scaffold for kinesin-1 vesicular cargos. Exp. Cell Res. 309, 379–389 (2005).

    Article  CAS  Google Scholar 

  31. Follit, J. A., Tuft, R. A., Fogarty, K. E. & Pazour, G. J. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol. Biol. Cell 17, 3781–3792 (2006).

    Article  CAS  Google Scholar 

  32. Nagata, S., Nakanishi, M., Nanba, R. & Fujita, N. Developmental expression of XEEL, a novel molecule of the Xenopus oocyte cortical granule lectin family. Dev. Genes Evol. 213, 368–370 (2003).

    Article  CAS  Google Scholar 

  33. Cai, H., Reinisch, K. & Ferro-Novick, S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12, 671–682 (2007).

    Article  CAS  Google Scholar 

  34. Billett, F. S. & Gould, R. P. Fine structural changes in the differentiating epidermis of Xenopus laevis embryos. J. Anat. 108, 465–480 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nachury, M. V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    Article  CAS  Google Scholar 

  36. Sorokin, S. P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3, 207–230 (1968).

    CAS  PubMed  Google Scholar 

  37. Boyadjiev, S. A. et al. Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nature Genet. 38, 1192–1197 (2006).

    Article  CAS  Google Scholar 

  38. Lang, M. R., Lapierre, L. A., Frotscher, M., Goldenring, J. R. & Knapik, E. W. Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation. Nature Genet. 38, 1198–1203 (2006).

    Article  CAS  Google Scholar 

  39. Snell, G., Fekete, E. & Hummel, K. The relation of mating, ovulation and the estrus smear in the house mouse to the time of day. Anat. Rec. 76, 30–54 (1948).

    Google Scholar 

  40. Wilson, J. Embryological considerations in teratology. in Teratology: Principles and Techniques. (ed. J. Wilson) 251–277 (University of Chicago Press, Chicago; 1965).

    Google Scholar 

  41. Kimmel, C. A. & Trammel, C. A rapid procedure for routine double staining of cartilage and bone in fetal and adult animals. Stain Technol. 56, 271–273 (1981).

    Article  CAS  Google Scholar 

  42. Lee, I., Li, Z. & Marcotte, E. M. An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae. PLoS ONE 2, e988 (2007).

    Article  Google Scholar 

  43. Kim, W. K., Krumpelman, C. & Marcotte, E. M. Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy. Genome Biol. 9 (Suppl 1), S5 (2008).

    Article  Google Scholar 

  44. Lee, I. et al. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nature Genet. 40, 181–188 (2008).

    Article  CAS  Google Scholar 

  45. Breitkreutz, B. J. et al. The BioGRID Interaction Database: 2008 update. Nucleic Acids Res. 36, D637–D640 (2008).

    Article  CAS  Google Scholar 

  46. Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006).

    Article  CAS  Google Scholar 

  47. McGuffin, L. J., Bryson, K. & Jones, D. T. The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405 (2000).

    Article  CAS  Google Scholar 

  48. McGuffin, L. J. & Jones, D. T. Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 19, 874–881 (2003).

    Article  CAS  Google Scholar 

  49. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

    Article  CAS  Google Scholar 

  50. Sive, H. L., Grainger, R. M. & Harland, R. M. Early Development of Xenopus laevis: A Laboratory Manual. (Cold Spring Harbor Press, NY, 2000).

    Google Scholar 

Download references

Acknowledgements

The ES cell clone for making the Fuz mutant mouse was provided by Lexicon Pharmaceuticals. We thank P. Paukstelis for aid with structural modelling, S. Vokes for critical comments on the manuscript, and Wei H. for technical help with histology and immunostaining. Phil Abitua is supported by a Diversity Supplement from the NIH/NIGMS. This work was supported by grants to K.J.L from the Wellcome Trust and the BBSRC; to E.M.M. from the NSF, NIH, Welch Foundation (F-1515), Texas Institute for Drug and Diagnostic Development, and a Packard Fellowship; grants to J.B.W. from the NIH/NIGMS, The March of Dimes, The Burroughs Wellcome Fund, the Sandler Program for Asthma Research, and the Texas Advanced Research Program; and by grants to R.H.F. from the NIH and The Texas A&M Institute for Genomic Medicine.

Author information

Authors and Affiliations

Authors

Contributions

R.S.G., P.B.A., B.J.W., H.L.S.-R., K.J.L., E.M.M., J.B.W., and R.H.F. designed and interpreted the experiments. R.S.G. performed frog embryo manipulations, construct generation, immunostaining, confocal imaging, structure homology modelling, and protein interactome analysis. P.B.A. performed electron microscopy and EM image analysis. B.J.W. and R.H.F. bred the mice and performed phenotype characterization. B.W.J., H.L.S.-R., K.J.L., R.S.G., and J.B.W. performed mouse immunostaining and imaging. O.B. performed co-immunoprecipiations. G.S.W., I.L., and E.M.M. performed gene network analysis. J.B.W. and R.S.G. assembled figures and wrote the manuscript.

Corresponding authors

Correspondence to John B. Wallingford or Richard H. Finnell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1795 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, R., Abitua, P., Wlodarczyk, B. et al. The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat Cell Biol 11, 1225–1232 (2009). https://doi.org/10.1038/ncb1966

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1966

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing