Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner

Abstract

Using two-colour imaging and high resolution TIRF microscopy, we investigated the assembly and maturation of nascent adhesions in migrating cells. We show that nascent adhesions assemble and are stable within the lamellipodium. The assembly is independent of myosin II but its rate is proportional to the protrusion rate and requires actin polymerization. At the lamellipodium back, the nascent adhesions either disassemble or mature through growth and elongation. Maturation occurs along an α-actinin–actin template that elongates centripetally from nascent adhesions. α-Actinin mediates the formation of the template and organization of adhesions associated with actin filaments, suggesting that actin crosslinking has a major role in this process. Adhesion maturation also requires myosin II. Rescue of a myosin IIA knockdown with an actin-bound but motor-inhibited mutant of myosin IIA shows that the actin crosslinking function of myosin II mediates initial adhesion maturation. From these studies, we have developed a model for adhesion assembly that clarifies the relative contributions of myosin II and actin polymerization and organization.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rapid turnover of nascent adhesions during protrusion.
Figure 2: Myosin II inhibition promotes nascent adhesion assembly and inhibits adhesion maturation.
Figure 3: Nascent adhesions reside in the lamellipodium.
Figure 4: An actin template organizes and promotes hierarchical adhesion maturation.
Figure 5: α-actinin knockdown inhibits actin orientation and adhesion elongation in protrusions.
Figure 6: N93K–myosin IIA or overexpressed α-actinin restores adhesion maturation in myosin IIA-deficient cells.
Figure 7: Rescue of adhesion maturation in α-actinin-depleted cells by overexpression of MIIA.
Figure 8: Working model for adhesion assembly, turnover and maturation

Similar content being viewed by others

References

  1. Webb, D. J. et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biol. 6, 154–161 (2004).

    Article  CAS  Google Scholar 

  2. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  Google Scholar 

  3. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  4. Schwartz, M. A. & Ginsberg, M. H. Networks and crosstalk: integrin signalling spreads. Nature Cell Biol. 4, E65–68 (2002).

    Article  CAS  Google Scholar 

  5. Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V. & Wang, Y. L. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–888 (2001).

    Article  CAS  Google Scholar 

  6. Nayal, A. et al. Paxillin phosphorylation at Ser 273 localizes a GIT1–PIX–PAK complex and regulates adhesion and protrusion dynamics. J. Cell Biol. 173, 587–589 (2006).

    Article  CAS  Google Scholar 

  7. Zaidel-Bar, R., Itzkovitz, S., Ma'ayan, A., Iyengar, R. & Geiger, B. Functional atlas of the integrin adhesome. Nature Cell Biol. 9, 858–867 (2007).

    Article  CAS  Google Scholar 

  8. Webb, D. J., Parsons, J. T. & Horwitz, A. F. Adhesion assembly, disassembly and turnover in migrating cells — over and over and over again. Nature Cell Biol. 4, E97–E100 (2002).

    Article  CAS  Google Scholar 

  9. Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004).

    Article  CAS  Google Scholar 

  10. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999).

    Article  CAS  Google Scholar 

  11. Gupton, S. L. & Waterman-Storer, C. M. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125, 1361–1374 (2006).

    Article  CAS  Google Scholar 

  12. Giannone, G. et al. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128, 561–575 (2007).

    Article  CAS  Google Scholar 

  13. Dubin-Thaler, B. J., Giannone, G., Dobereiner, H. G. & Sheetz, M. P. Nanometer analysis of cell spreading on matrix-coated surfaces reveals two distinct cell states and STEPs. Biophys. J. 86, 1794–1806 (2004).

    Article  CAS  Google Scholar 

  14. Vicente-Manzanares, M., Zareno, J., Whitmore, L., Choi, C. K. & Horwitz, A. F. Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J. Cell Biol. 176, 573–580 (2007).

    Article  CAS  Google Scholar 

  15. Bershadsky, A., Kozlov, M. & Geiger, B. Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr. Opin. Cell Biol. 18, 472–481 (2006).

    Article  CAS  Google Scholar 

  16. Galbraith, C. G., Yamada, K. M. & Sheetz, M. P. The relationship between force and focal complex development. J. Cell Biol. 159, 695–705 (2002).

    Article  CAS  Google Scholar 

  17. Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001).

    Article  CAS  Google Scholar 

  18. Katsumi, A. et al. Effects of cell tension on the small GTPase Rac. J. Cell Biol. 158, 153–164 (2002).

    Article  CAS  Google Scholar 

  19. Amano, M. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246–20249 (1996).

    Article  CAS  Google Scholar 

  20. Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403–1415 (1996).

    Article  CAS  Google Scholar 

  21. Zaidel-Bar, R., Milo, R., Kam, Z. & Geiger, B. A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell–matrix adhesions. J. Cell Sci. 120, 137–148 (2007).

    Article  CAS  Google Scholar 

  22. Zaidel-Bar, R., Ballestrem, C., Kam, Z. & Geiger, B. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci. 116, 4605–4613 (2003).

    Article  CAS  Google Scholar 

  23. Nobes, C. D. & Hall, A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  24. Rottner, K., Hall, A. & Small, J. V. Interplay between Rac and Rho in the control of substrate contact dynamics. Curr. Biol. 9, 640–649 (1999).

    Article  CAS  Google Scholar 

  25. Watanabe, N. & Mitchison, T. J. Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 295, 1083–1086 (2002).

    Article  CAS  Google Scholar 

  26. Otey, C. & Carpen, O. α-actinin revisited: a fresh look at an old player. Cell Motil. Cytoskeleton 58, 104–111 (2004).

    Article  CAS  Google Scholar 

  27. Kim, K. Y., Kovacs, M., Kawamoto, S., Sellers, J. R. & Adelstein, R. S. Disease-associated mutations and alternative splicing alter the enzymatic and motile activity of nonmuscle myosins II-B and II.-C. J. Biol. Chem. 280, 22769–22775 (2005).

    Article  CAS  Google Scholar 

  28. Hu, A., Wang, F. & Sellers, J. R. Mutations in human nonmuscle myosin IIA found in patients with May-Hegglin anomaly and Fechtner syndrome result in impaired enzymatic function. J. Biol. Chem. 277, 46512–46517 (2002).

    Article  CAS  Google Scholar 

  29. Triplett, J. W. & Pavalko, F. M. Disruption of α-actinin-integrin interactions at focal adhesions renders osteoblasts susceptible to apoptosis. Am. J. Physiol. Cell. Physiol. 291, C909–C921 (2006).

    Article  CAS  Google Scholar 

  30. Giannone, G. et al. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116, 431–443 (2004).

    Article  CAS  Google Scholar 

  31. DeMali, K. A., Barlow, C. A. & Burridge, K. Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J. Cell Biol. 159, 881–891 (2002).

    Article  CAS  Google Scholar 

  32. Serrels, B. et al. Focal adhesion kinase controls actin assembly via a FERM-mediated interaction with the Arp2/3 complex. Nature Cell Biol. 9, 1046–1056 (2007).

    Article  CAS  Google Scholar 

  33. Weed, S. A. et al. Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J. Cell. Biol. 151, 29–40 (2000).

    Article  CAS  Google Scholar 

  34. Galbraith, C. G., Yamada, K. M. & Galbraith, J. A. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315, 992–995 (2007).

    Article  CAS  Google Scholar 

  35. Small, J. V. & Resch, G. P. The comings and goings of actin: coupling protrusion and retraction in cell motility. Curr. Opin. Cell Biol. 17, 517–523 (2005).

    Article  CAS  Google Scholar 

  36. Vasiliev, J. M. Spreading of non-transformed and transformed cells. Biochim. Biophys. Acta 780, 21–65 (1985).

    CAS  PubMed  Google Scholar 

  37. Hotulainen, P. & Lappalainen, P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006).

    Article  CAS  Google Scholar 

  38. Laukaitis, C. M., Webb, D. J., Donais, K. & Horwitz, A. F. Differential dynamics of α5 integrin, paxillin, and α-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol. 153, 1427–1440 (2001).

    Article  CAS  Google Scholar 

  39. Lo, C. M. et al. Nonmuscle myosin IIb is involved in the guidance of fibroblast migration. Mol. Biol. Cell 15, 982–989 (2004).

    Article  CAS  Google Scholar 

  40. Cai, Y. et al. Nonmuscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow. Biophys. J. 91, 3907–3920 (2006).

    Article  CAS  Google Scholar 

  41. Xu, X. S. et al. During multicellular migration, myosin II serves a structural role independent of its motor function. Dev. Biol. 232, 255–264 (2001).

    Article  CAS  Google Scholar 

  42. Ma, X., Kawamoto, S., Hara, Y. & Adelstein, R. S. A point mutation in the motor domain of nonmuscle myosin II-B impairs migration of distinct groups of neurons. Mol. Biol. Cell 15, 2568–2579 (2004).

    Article  CAS  Google Scholar 

  43. Burridge, K. & Chrzanowska-Wodnicka, M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12, 463–518 (1996).

    Article  CAS  Google Scholar 

  44. Wei, Q. & Adelstein, R. S. Conditional expression of a truncated fragment of nonmuscle myosin II-A alters cell shape but not cytokinesis in HeLa cells. Mol. Biol. Cell 11, 3617–3627 (2000).

    Article  CAS  Google Scholar 

  45. DesMarais, V., Macaluso, F., Condeelis, J. & Bailly, M. Synergistic interaction between the Arp2/3 complex and cofilin drives stimulated lamellipod extension. J. Cell Sci. 117, 3499–3510 (2004).

    Article  CAS  Google Scholar 

  46. Eto, M., Kirkbride, J., Elliott, E., Lo, S. H. & Brautigan, D. L. Association of the tensin N-terminal protein-tyrosine phosphatase domain with the alpha isoform of protein phosphatase-1 in focal adhesions. J. Biol. Chem. 282, 17806–17815 (2007).

    Article  CAS  Google Scholar 

  47. Rottner, K., Krause, M., Gimona, M., Small, J. V. & Wehland, J. Zyxin is not colocalized with vasodilator-stimulated phosphoprotein (VASP) at lamellipodial tips and exhibits different dynamics to vinculin, paxillin, and VASP in focal adhesions. Mol. Biol. Cell 12, 3103–3113 (2001).

    Article  CAS  Google Scholar 

  48. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  49. Schafer, D. A. et al. Visualization and molecular analysis of actin assembly in living cells. J. Cell Biol. 143, 1919–1930 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Laura E. Chopko for helping to characterize the α-actinin knockdown. Also, we thank Hannelore Asmussen for technical assistance with substrate preparation. This work was supported by NIH grants GM23244 (AFH), the Cell Migration Consortium (U54 GM064346) and NSF grant DMS-0715729 (AM).

Author information

Authors and Affiliations

Authors

Contributions

C.K.C and M.V.-M. designed and performed the experiments and wrote the paper; J.Z. and l.A.W. assisted with the research; A.M. developed the mathematical model and its presentation; A.R.H. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Miguel Vicente-Manzanares.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and Supplementary Information (PDF 1537 kb)

Supplementary Information

Supplementary Video 1 (AVI 643 kb)

Supplementary Information

Supplementary Video 2 (AVI 1506 kb)

Supplementary Information

Supplementary Video 3 (AVI 1581 kb)

Supplementary Information

Supplementary Video 4 (AVI 2693 kb)

Supplementary Information

Supplementary Video 5 (AVI 2404 kb)

Supplementary Information

Supplementary Video 6 (AVI 503 kb)

Supplementary Information

Supplementary Video 7 (AVI 1969 kb)

Supplementary Information

Supplementary Video 8 (AVI 911 kb)

Supplementary Information

Supplementary Video 9 (AVI 3164 kb)

Supplementary Information

Supplementary Video 10 (AVI 1192 kb)

Supplementary Information

Supplementary Video 11 (AVI 2814 kb)

Supplementary Information

Supplementary Video 12 (AVI 1133 kb)

Supplementary Information

Supplementary Video 13 (AVI 3466 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, C., Vicente-Manzanares, M., Zareno, J. et al. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 10, 1039–1050 (2008). https://doi.org/10.1038/ncb1763

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1763

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing