Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

EphrinB1 controls cell–cell junctions through the Par polarity complex

Abstract

A body of evidence is emerging that shows a requirement for ephrin ligands in the proper migration of cells, and the formation of cell and tissue boundaries. These processes are dependent on the cell–cell adhesion system, which plays a crucial role in normal morphogenetic processes during development, as well as in invasion and metastasis1,2,3,4,5,6,7,8,9. Although ephrinB ligands are bi-directional signalling molecules, the precise mechanism by which ephrinB1 signals through its intracellular domain to regulate cell–cell adhesion in epithelial cells remains unclear. Here, we present evidence that ephrinB1 associates with the Par polarity complex protein Par-6 (a scaffold protein required for establishing tight junctions) and can compete with the small GTPase Cdc42 for association with Par-6. This competition causes inactivation of the Par complex, resulting in the loss of tight junctions. Moreover, the interaction between ephrinB1 and Par-6 is disrupted by tyrosine phosphorylation of the intracellular domain of ephrinB1. Thus, we have identified a mechanism by which ephrinB1 signalling regulates cell–cell junctions in epithelial cells, and this may influence how we devise therapeutic interventions regarding these molecules in metastatic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EphrinB1 binds Par-6 in vivo and in vitro.
Figure 2: Inhibition and overexpression of ephrinB1 causes disruption of tight junction formation.
Figure 3: EphrinB1 and active Cdc42 (CA Cdc42) compete for Par-6 binding.
Figure 4: FGF signalling blocks the interaction between ephrinB1 and Par-6 through tyrosine phosphorylation of the intracellular domain of ephrinB1.
Figure 5: Phosphorylation on Tyr 310 regulates tight junction formation by dissociating ephrinB1 from Par-6.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Davy, A., Aubin, J. & Soriano, P. Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev. 18, 572–583 (2004).

    Article  CAS  Google Scholar 

  2. Cortina, C. et al. EphB–ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nature Genet. 39, 1376–1383 (2007).

    Article  CAS  Google Scholar 

  3. Heroult, M., Schaffner, F. & Augustin, H. G. Eph receptor and ephrin ligand-mediated interactions during angiogenesis and tumor progression. Exp. Cell Res. 312, 642–650 (2006).

    Article  CAS  Google Scholar 

  4. Zhang, J. & Hughes, S. Role of the ephrin and Eph receptor tyrosine kinase families in angiogenesis and development of the cardiovascular system. J. Pathol. 208, 453–461 (2006).

    Article  CAS  Google Scholar 

  5. Wimmer-Kleikamp, S. H. & Lackmann, M. Eph-modulated cell morphology, adhesion and motility in carcinogenesis. IUBMB Life 57, 421–431 (2005).

    Article  CAS  Google Scholar 

  6. Cowan, C. A. & Henkemeyer, M. Ephrins in reverse, park and drive. Trends Cell Biol. 12, 339–346 (2002).

    Article  CAS  Google Scholar 

  7. Sawai, Y. et al. Expression of ephrin-B1 in hepatocellular carcinoma: possible involvement in neovascularization. J. Hepatol. 39, 991–996 (2003).

    Article  CAS  Google Scholar 

  8. Surawska, H., Ma, P. C. & Salgia, R. The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev. 15, 419–433 (2004).

    Article  CAS  Google Scholar 

  9. Pasquale, E. B. Eph receptor signalling casts a wide net on cell behaviour. Nature Rev. Mol. Cell Biol. 6, 462–475 (2005).

    Article  CAS  Google Scholar 

  10. Chong, L. D., Park, E. K., Latimer, E., Friesel, R. & Daar, I. O. Fibroblast growth factor receptor-mediated rescue of x-ephrin B1-induced cell dissociation in Xenopus embryos. Mol. Cell Biol. 20, 724–734 (2000).

    Article  CAS  Google Scholar 

  11. Jones, T. L. et al. Loss of cell adhesion in Xenopus laevis embryos mediated by the cytoplasmic domain of XLerk, an erythropoietin-producing hepatocellular ligand. Proc. Natl Acad. Sci. USA 95, 576–581 (1998).

    Article  CAS  Google Scholar 

  12. Lu, Q., Sun, E. E., Klein, R. S. & Flanagan, J. G. Ephrin-B reverse signaling is mediated by a novel PDZ–RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 105, 69–79 (2001).

    Article  CAS  Google Scholar 

  13. Lee, H. S. et al. Dishevelled mediates ephrinB1 signalling in the eye field through the planar cell polarity pathway. Nature Cell Biol. 8, 55–63 (2006).

    Article  CAS  Google Scholar 

  14. Segura, I., Essmann, C. L., Weinges, S. & Acker-Palmer, A. Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation. Nature Neurosci. 10, 301–310 (2007).

    Article  CAS  Google Scholar 

  15. Davy, A., Bush, J. O. & Soriano, P. Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome. PLoS Biol. 4, e315 (2006).

    Article  Google Scholar 

  16. Shin, K., Fogg, V. C. & Margolis, B. Tight junctions and cell polarity. Annu. Rev. Cell Dev. Biol. 22, 207–235 (2006).

    Article  CAS  Google Scholar 

  17. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000).

    Article  CAS  Google Scholar 

  18. Wang, Q. & Margolis, B. Apical junctional complexes and cell polarity. Kidney Int. 72, 1448–1458 (2007).

    Article  CAS  Google Scholar 

  19. Yamanaka, T. et al. PAR-6 regulates aPKC activity in a novel way and mediates cell–cell contact-induced formation of the epithelial junctional complex. Genes Cells 6, 721–731 (2001).

    Article  CAS  Google Scholar 

  20. Gao, L. & Macara, I. G. Isoforms of the polarity protein par6 have distinct functions. J. Biol. Chem. 279, 41557–41562 (2004).

    Article  CAS  Google Scholar 

  21. Liu, W. et al. mechanism of activation of the Formin protein Daam1. Proc. Natl Acad. Sci. USA 105, 210–215 (2008).

    Article  CAS  Google Scholar 

  22. Qiu, R. G., Abo, A. & Steven Martin, G. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCζ signaling and cell transformation. Curr. Biol. 10, 697–707 (2000).

    Article  CAS  Google Scholar 

  23. Lin, D. et al. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000).

    Article  CAS  Google Scholar 

  24. Holland, S. J. et al. Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J. 16, 3877–3888 (1997).

    Article  CAS  Google Scholar 

  25. Bruckner, K., Pasquale, E. B. & Klein, R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275, 1640–1643 (1997).

    Article  CAS  Google Scholar 

  26. Tanaka, M., Kamata, R. & Sakai, R. Phosphorylation of ephrin-B1 via the interaction with claudin following cell–cell contact formation. EMBO J. 24, 3700–3711 (2005).

    Article  CAS  Google Scholar 

  27. Miao, H. et al. Inhibition of integrin-mediated cell adhesion but not directional cell migration requires catalytic activity of EphB3 receptor tyrosine kinase. Role of Rho family small GTPases. J. Biol. Chem. 280, 923–932 (2005).

    Article  CAS  Google Scholar 

  28. Batlle, E. et al. EphB receptor activity suppresses colorectal cancer progression. Nature 435, 1126–1130 (2005).

    Article  CAS  Google Scholar 

  29. Gao, L., Joberty, G. & Macara, I. G. Assembly of epithelial tight junctions is negatively regulated by Par6. Curr. Biol. 12, 221–225 (2002).

    Article  CAS  Google Scholar 

  30. Hurd, T. W. et al. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature Cell Biol. 5, 137–142 (2003).

    Article  CAS  Google Scholar 

  31. Moore, K. B., Mood, K., Daar, I. O. & Moody, S. A. Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways. Dev. Cell 6, 55–67 (2004).

    Article  CAS  Google Scholar 

  32. Moody, S. A. Cell lineage analysis in Xenopus embryos. Methods Mol. Biol. 135, 331–347 (2000).

    CAS  PubMed  Google Scholar 

  33. Bong, Y. et al. ephrinB1 signals from the cell surface to the nucleus by recruitment of STAT3. Proc. Natl Acad. Sci. USA 104, 17305–17310 (2007).

    Article  CAS  Google Scholar 

  34. Dollar, G. L., Weber, U., Mlodzik, M. & Sokol, S. Y. Regulation of Lethal giant larvae by Dishevelled. Nature 437, 1376–1380 (2005).

    Article  CAS  Google Scholar 

  35. Hardman, M. J., Sisi, P., Banbury, D. N. & Byrne, C. Patterned acquisition of skin barrier function during development. Development 125, 1541–1552 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S.Y. Sokol, O. Ossipova and K. Itoh for the Lgl2 antibody, helpful suggestions and critical reading of this manuscript; K. Nagashima and A. Kamata for TEM; A. Traweger for the GST–Par-3 construct; S. Shyam and J. Archaya for critical reading of this manuscript. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute.

Author information

Authors and Affiliations

Authors

Contributions

H.L. and I.D. designed the experiments, analysed the data and wrote the manuscript; H.L., T.N., K.M. and Y.B. performed the experiments.

Corresponding author

Correspondence to Ira O. Daar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, S7, S8, S9 and S10 (PDF 1907 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HS., Nishanian, T., Mood, K. et al. EphrinB1 controls cell–cell junctions through the Par polarity complex. Nat Cell Biol 10, 979–986 (2008). https://doi.org/10.1038/ncb1758

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1758

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing