Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

IQGAP3 regulates cell proliferation through the Ras/ERK signalling cascade

Abstract

Proliferation of epithelial cells must be spatiotemporally regulated to maintain the organization of epithelial sheets. Here we show that the IQGAP family, comprising IQGAP1, 2 and 3, underlies lateral cell–cell contacts of epithelial cells. Of the three proteins, IQGAP3 is unique in that its expression is specifically confined to proliferating cells. Knockdown of IQGAP3 in cultured epithelial cells caused inhibition of proliferation and ERK activity. When exogenously expressed in quiescent cells, IQGAP3 was capable of inducing cell-cycle re-entry, which was completely inhibited by the MEK inhibitor U0126. Thus, IQGAP3 is necessary and sufficient for driving cell proliferation and ERK acts downstream of IQGAP3. Furthermore, IQGAP3 specifically interacted with the active, GTP-bound form of Ras, and in IQGAP3 knockdown cells, the activity of Ras, but not of other small GTPases, was inhibited. Thus, IQGAP3 regulates the promotion of cell proliferation through Ras-dependent ERK activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific expression of IQGAP3 in proliferating cells.
Figure 2: Stable knockdown of IQGAP3 expression in Eph4 cells.
Figure 3: IQGAP3-induced cell cycle re-entry.
Figure 4: Specific interaction of IQGAP3 with Ras.
Figure 5: Specific downregulation of Ras in IQGAP3-KD cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Downward, J. Cell cycle: routine role for Ras. Curr. Biol. 7, R258–R260 (1997).

    Article  CAS  Google Scholar 

  2. Lewis, T. S., Shapiro, P. S. & Ahn, N. G. Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74, 49–139 (1998).

    Article  CAS  Google Scholar 

  3. Pearson, G. et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endoc. Rev. 22, 153–183 (2001).

    CAS  Google Scholar 

  4. Coleman, M. L., Marshall, C. J. & Olson, M. F. Ras and Rho GTPases in G1-phase cell-cycle regulation. Nature Rev. Mol. Cell Biol. 5, 355–366 (2004).

    Article  CAS  Google Scholar 

  5. Torii, S., Yamamoto, T., Tsuchiya, Y. & Nishida, E. ERK MAP kinase in G1 cell cycle progression and cancer. Cancer Sci. 97, 697–702 (2006).

    Article  CAS  Google Scholar 

  6. Shaw, R. J. & Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424–430 (2006).

    Article  CAS  Google Scholar 

  7. Meloche, S. & Pouysségur, J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26, 3227–3239 (2007).

    Article  CAS  Google Scholar 

  8. Katz, M., Amit, I. & Yarden, Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim. Biophys. Acta 1773, 1161–1176. (2007).

    Article  CAS  Google Scholar 

  9. Tsukita, S., Itoh, M., Nagafuchi, A., Yonemura, S. & Tsukita, S. Submembranous junctional plaque proteins include potential tumor suppressor molecules. J. Cell Biol. 123, 1049–1053 (1993).

    Article  CAS  Google Scholar 

  10. Fagotto, F. & Gumbiner, B. M. Cell contact-dependent signaling. Dev. Biol. 180, 445–454 (1996).

    Article  CAS  Google Scholar 

  11. Walker, J. L., Fournier, A. K. & Associan, R. L. Regulation of growth factor signaling and cell cycle progression by cell adhesion and adhesion-dependent changes in cellular tension. Cytokine Growth Factor Rev. 16, 395–405 (2005).

    Article  CAS  Google Scholar 

  12. Weissbach, L. et al. Identification of a human rasGAP-related protein containing calmodulin-binding motifs. J. Biol. Chem. 269, 20517–20521 (1994).

    CAS  PubMed  Google Scholar 

  13. Kuroda, S. et al. Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1. J. Biol. Chem. 271, 23363–23367 (1996).

    Article  CAS  Google Scholar 

  14. Brill, S. et al. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Mol. Cell. Biol. 16, 4869–4878 (1996).

    Article  CAS  Google Scholar 

  15. Wang, S. et al. IQGAP3, a novel effector of Rac1 and Cdc42, regulates neurite outgrowth. J. Cell Sci. 120, 567–577 (2007).

    Article  CAS  Google Scholar 

  16. Hart, M. J., Callow, M. G., Souza, B. & Polakis, P. IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. EMBO J. 15, 2997–3005 (1996).

    Article  CAS  Google Scholar 

  17. Bashour, A. M., Fullerton, A. T., Hart, M. J. & Bloom, G. S. IQGAP1, a Rac- and Cdc42-binding protein, directly binds and cross-links microfilaments. J. Cell Biol. 137, 1555–1566 (1997).

    Article  CAS  Google Scholar 

  18. Noritake, J. et al. Positive role of IQGAP1, an effector of Rac1, in actin-meshwork formation at sites of cell-cell contact. Mol. Biol. Cell 15, 1065–1076 (2004).

    Article  CAS  Google Scholar 

  19. Sokol, S. Y., Li, Z. & Sacks, D. B. The effect of IQGAP1 on Xenopus embryonic ectoderm requires Cdc42. J. Biol. Chem. 276, 48425–48430 (2001).

    Article  CAS  Google Scholar 

  20. Swart-Mataraza, J. M., Li, Z. & Sacks, D. B. IQGAP1 is a component of Cdc42 signaling to the cytoskeleton. J. Biol. Chem. 277, 24753–24763 (2002).

    Article  CAS  Google Scholar 

  21. Fukata, M. et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873–885 (2002).

    Article  CAS  Google Scholar 

  22. Watanabe, T. et al. Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev. Cell 7, 871–883 (2004).

    Article  CAS  Google Scholar 

  23. Noritake, J. et al. IQGAP1: a key regulator of adhesion and migration. J. Cell Sci. 118, 2085–2092 (2005).

    Article  CAS  Google Scholar 

  24. Brown, M. D. & Sacks, D. B. IQGAP1 in cellular signaling: bridging the GAP. Trends. Cell Biol. 16, 242–249 (2006).

    Article  CAS  Google Scholar 

  25. Li, S. et al. Gastric hyperplasia in mice lacking the putative Cdc42 effector IQGAP1. Mol. Cell. Biol. 20, 697–701 (2000).

    Article  CAS  Google Scholar 

  26. Schmidt, V. A. et al. Development of hepatocellular carcinoma in Iqgap2-deficient mice is IQGAP1 dependent. Mol. Cell. Biol. 28, 1489–1502 (2008).

    Article  CAS  Google Scholar 

  27. Radtke, F. & Clevers, H. Self-renewal and cancer of the gut: two sides of a coin. Science 307, 1904–1909 (2005).

    Article  CAS  Google Scholar 

  28. Gerdes, J. et al. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 133, 1710–1715 (1984).

    CAS  PubMed  Google Scholar 

  29. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  30. Ruvinsky, I. & Meyuhas, O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem. Sci. 31, 342–348 (2006).

    Article  CAS  Google Scholar 

  31. Neufeld, T. P. & Edgar, B. A. Connections between growth and the cell cycle. Curr. Opin. Cell Biol. 10, 784–790 (1998).

    Article  CAS  Google Scholar 

  32. Jorgensen, P. & Tyers, M. How cells coordinate growth and division. Curr. Biol. 14, R1014–R1027 (2004).

    Article  CAS  Google Scholar 

  33. Schubbert, S., Bollag, G. & Shannon, K. Deregulated Ras signaling in developmental disorders: new tricks for an old dog. Curr. Opin. Genet. Dev. 17, 15–22 (2007).

    Article  CAS  Google Scholar 

  34. Konstantinopoulos, P. A., Karamouzis, M. V. & Papavassiliou, A. G. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nature Rev. Drug Discov. 6, 541–555 (2007).

    Article  CAS  Google Scholar 

  35. Bos, J. L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank T. Noda, S. Nishikawa and our laboratory members for discussion and encouragement during this study. Especially, we thank C. Inoue for her excellent technical assistance. We also thank D. Sipp for editing English in the native speaker level. This study was supported in part by a Grant-in-Aid for Cancer Research to Sh. Tsukita and Sa. Tsukita and by a Grant-in-Aid for Creative Scientific Research from the Ministry of Education, Science and Culture of Japan to Sa. Tsukita.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachiko Tsukita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 3531 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nojima, H., Adachi, M., Matsui, T. et al. IQGAP3 regulates cell proliferation through the Ras/ERK signalling cascade. Nat Cell Biol 10, 971–978 (2008). https://doi.org/10.1038/ncb1757

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1757

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing