Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation

Abstract

Cancer cells use aerobic glycolysis preferentially for energy provision1,2 and this metabolic change is important for tumour growth3,4. Here, we have found a link between the tumour suppressor p53, the transcription factor NF-κB and glycolysis. In p53-deficient primary cultured cells, kinase activities of IKKα and IKKβ and subsequent NF-κB activity were enhanced. Activation of NF-κB, by loss of p53, caused an increase in the rate of aerobic glycolysis and upregulation of Glut3. Oncogenic Ras-induced cell transformation and acceleration of aerobic glycolysis in p53-deficient cells were suppressed in the absence of p65/NF-κB expression, and were restored by GLUT3 expression. It was also shown that a glycolytic inhibitor diminished the enhanced IKK activity in p53-deficient cells. Moreover, in Ras-expressing p53-deficient cells, IKK activity was suppressed by p65 deficiency and restored by GLUT3 expression. Taken together, these data indicate that p53 restricts activation of the IKK–NF-κB pathway through suppression of glycolysis. These results suggest that a positive-feedback loop exists, whereby glycolysis drives IKK–NF-κB activation, and that hyperactivation of this loop by loss of p53 is important in oncogene-induced cell transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p65/NF-κB is important for Ha–RasV12-induced transformation of p53−/− MEFs.
Figure 2: NF-κB is required for optimal aerobic glycolysis in p53−/− MEFs.
Figure 3: GLUT3 expression in p53−/− MEFs is regulated by p65/NF-κB.
Figure 4: Activated p53 suppresses NF-κB activity and aerobic glycolysis.
Figure 5: 5 Glycolysis drives IKK activation in p53−/− MEFs.

Similar content being viewed by others

References

  1. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    CAS  PubMed  Google Scholar 

  2. Kim, J. W. & Dang, C. V. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 66, 8927–8930 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Dang, C. V. & Semenza, G. L. Oncogenic alterations of metabolism. Trends Biochem. Sci. 24, 68–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer 4, 891–899 (2004).

    Article  CAS  Google Scholar 

  5. Meller, J., Sahlmann, C. O. & Scheel, A. K. 18F-FDG PET and PET/CT in fever of unknown origin. J. Nucl. Med. 48, 35–45 (2007).

    CAS  PubMed  Google Scholar 

  6. Hamroun, D. et al. The UMD TP53 database and website: update and revisions. Hum. Mutat. 27, 14–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  Google Scholar 

  8. Lowe, S. W., Jacks, T., Housman, D. E. & Ruley, H. E. Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc. Natl Acad. Sci. USA 91, 2026–2030 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka, N. et al. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 77, 829–839 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Bartek, J., Lukas, J. & Bartkova, J. DNA damage response as an anti-cancer barrier: damage threshold and the concept of 'conditional haploinsufficiency'. Cell Cycle 6, 2344–2347 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Finco, T. S. et al. Oncogenic Ha-Ras-induced signaling activates NF-κB transcriptional activity, which is required for cellular transformation. J. Biol. Chem. 272, 24113–24116 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Rayet, B. & Gelinas, C. Aberrant rel/nfκb genes and activity in human cancer. Oncogene 18, 6938–6947 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Ryan, K. M., Ernst, M. K., Rice, N. R. & Vousden, K. H. Role of NF-κB in p53-mediated programmed cell death. Nature 404, 892–897 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Webster, G. A. & Perkins, N. D. Transcriptional cross talk between NF-κB and p53. Mol. Cell. Biol. 19, 3485–3495 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang, W. C., Ju, T. K., Hung, M. C. & Chen, C. C. Phosphorylation of CBP by IKKα promotes cell growth by switching the binding preference of CBP from p53 to NF-κB. Mol. Cell 26, 75–87 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Janssens, S. & Tschopp, J. Signals from within: the DNA-damage-induced NF-κB response. Cell Death Differ. 13, 773–784 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Kondoh, H. et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 65, 177–185 (2005).

    CAS  PubMed  Google Scholar 

  19. Schwartzenberg-Bar-Yoseph, F., Armoni, M. & Karnieli, E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 64, 2627–2633 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Mayo, M. W. & Baldwin, A. S. The transcription factor NF-κB: control of oncogenesis and cancer therapy resistance. Biochim. Biophys. Acta 1470, M55–62 (2000).

    CAS  PubMed  Google Scholar 

  22. Zhong, H., Voll, R. E. & Ghosh, S. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the co-activator CBP/p300. Mol. Cell 1, 661–671 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Macheda, M. L., Rogers, S. & Best, J. D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J. Cell Physiol. 202, 654–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Medina, R. A. & Owen, G. I. Glucose transporters: expression, regulation and cancer. Biol. Res. 35, 9–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Pahl, H. L. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18, 6853–6866 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Anest, V. et al. A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression. Nature 423, 659–663 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto, Y., Verma, U. N., Prajapati, S., Kwak, Y. T. & Gaynor, R. B. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423, 655–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Weisz, L. et al. Mutant p53 enhances nuclear factor κB activation by tumor necrosis factor α in cancer cells. Cancer Res. 67, 2396–2401 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13, 539–548 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Taniguchi, M. Oren, H. Hirata, K. Sada, S. Minami, S. Ohta, S. Asoh, O. Kawanami, I. Ohsawa, W. A. Martin, E. Oda-Sato, Y. Abe, W. Nakajima and M. Ando for discussion; T. Doi, S. Mise and Y. Asano for technical support; I. Uehara for preparation of MEFs; R. Agami for the retroviral vectors pSuper-sh human p53 puro; D. V. Goeddel for IKKα and IKKβ cDNA. This work was supported by Grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

K. K. and N. T. designed the study; K. K., with contributions from K. A. and K. T., performed all experiments; K. K. and N. T. wrote the manuscript.

Corresponding author

Correspondence to Nobuyuki Tanaka.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, S7 (PDF 746 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawauchi, K., Araki, K., Tobiume, K. et al. p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation. Nat Cell Biol 10, 611–618 (2008). https://doi.org/10.1038/ncb1724

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1724

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing