Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Do the protocadherins Fat and Dachsous link up to determine both planar cell polarity and the dimensions of organs?

Abstract

Most, perhaps all cells in epithelial sheets are polarized in the plane of the sheet. This type of polarity, referred to as planar cell polarity (PCP), can be expressed in the orientation of cilia and stereocilia, in oriented outgrowths such as hairs, in the plane of cell division, in directed cell movement and possibly in the orientation of axon extension1,2. Another popular area in current research is growth: there is an attempt to find systems that fix the shape and size of organs. Although both polarity and growth are subject to overall control by morphogen gradients3, the mechanisms of this control are almost completely unknown. Here we discuss recent evidence for a 'steepness hypothesis' that links these two apparently disconnected features of animal development.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The steepness hypothesis.
Figure 2: The Hippo pathway35.
Figure 3: A sketch of the Ds/Ft model.
Figure 4: The effects of juxtaposing cells with different levels or states of the Ds/Ft system.

References

  1. Wang, Y. & Nathans, J. Development 134, 647–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Zallen, J.A. Cell 129, 1051–1063 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Zecca, M., Basler, K. & Struhl, G. Development 121, 2265–2278 (1995).

    CAS  PubMed  Google Scholar 

  4. Lawrence, P.A. Adv. Insect Physiol. 7, 197–266 (1970).

    Article  Google Scholar 

  5. Lawrence, P.A. J. Exp. Biol. 44, 607–620 (1966).

    Google Scholar 

  6. Struhl, G., Barbash, D.A. & Lawrence, P.A. Development 124, 2155–2165 (1997).

    CAS  PubMed  Google Scholar 

  7. Yang, C., Axelrod, J.D. & Simon, M.A. Cell 108, 675–688 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Casal, J., Lawrence, P.A. & Struhl, G. Development 133, 4561–4572 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Day, S.J. & Lawrence, P.A. Development 127, 2977–2987 (2000).

    CAS  PubMed  Google Scholar 

  10. Lawrence, P.A. Nature 429, 247 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Lawrence, P.A., Struhl, G. & Casal, J. Nature Rev. Genet. 8, 555–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Rogulja, D. & Irvine, K.D. Cell 123, 449–461 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Casal, J., Struhl, G. & Lawrence, P.A. Curr. Biol. 12, 1189–1198 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Reddy, B.V. & Irvine, K.D. Development 135, 2827–2838 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Bryant, P.J., Huettner, B., Held, L.I., Jr., Ryerse, J. & Szidonya, J. Dev. Biol. 129, 541–554 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Bennett, F.C. & Harvey, K.F. Curr. Biol. 16, 2101–2110 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Cho, E. et al. Nature Genet. 38, 1142–1150 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Silva, E., Tsatskis, Y., Gardano, L., Tapon, N. & McNeill, H. Curr. Biol. 16, 2081–2089 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Willecke, M. et al. Curr. Biol. 16, 2090–2100 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Hariharan, I.K. & Bilder, D. Annu. Rev. Genet. 40, 335–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Mahoney, P.A. et al. Cell 67, 853–868 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Ishikawa, H.O., Takeuchi, H., Haltiwanger, R.S. & Irvine, K.D. Science 321, 401–404 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma, D., Yang, C.H., McNeill, H., Simon, M.A. & Axelrod, J.D. Nature (2003).

  24. Strutt, H. & Strutt, D. Dev Cell 3, 851–863 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Rogulja, D., Rauskolb, C. & Irvine, K.D. Dev. Cell 15, 309–321 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Willecke, M., Hamaratoglu, F., Sansores-Garcia, L., Tao, C. & Halder, G. Proc. Natl Acad. Sci. USA 195, 14897–14902 (2008).

    Article  Google Scholar 

  27. Strutt, H., Mundy, J., Hofstra, K. & Strutt, D. Development 131, 881–890 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Zeidler, M.P., Perrimon, N. & Strutt, D.I. Dev. Biol. 228, 181–196. (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Mao, Y. et al. Development 133, 2539–2551 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Matakatsu, H. & Blair, S.S. Development (2006).

  31. Simon, M.A. Development 131, 6175–6184 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Zecca, M. & Struhl, G. Development 134, 3001–3010 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Zecca, M. & Struhl, G. Development 134, 3011–3020 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Lawrence, P.A., Crick, F.H.C. & Munro, M. J. Cell Sci. 11, 815–853 (1972).

    CAS  PubMed  Google Scholar 

  35. Saucedo, L.J. & Edgar, B.A. Nature Rev. Mol. Cell Biol. 8, 613–621 (2007).

    Article  CAS  Google Scholar 

  36. Thompson, D. W. Growth and Form (Cambridge University Press, 1917).

    Google Scholar 

  37. Huxley, J. S. Problems of Relative Growth (Methuen, London, 1932).

    Google Scholar 

Download references

Acknowledgements

We thank the Wellcome Trust and the Medical Research Council, UK for support. G.S. is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, P., Struhl, G. & Casal, J. Do the protocadherins Fat and Dachsous link up to determine both planar cell polarity and the dimensions of organs?. Nat Cell Biol 10, 1379–1382 (2008). https://doi.org/10.1038/ncb1208-1379

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1208-1379

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing