Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour

Abstract

The regulation of pH in cellular compartments is crucial for intracellular trafficking of vesicles and proteins and the transport of small molecules, including hormones. In endomembrane compartments, pH is regulated by vacuolar H+-ATPase1 (V-ATPase), which, in plants, act together with H+-pyrophosphatases2 (PPase), whereas distinct P-type H+-ATPases in the cell membrane control the pH in the cytoplasm and energize the plasma membrane3. Flower colour mutants have proved useful in identifying genes controlling the pH of vacuoles where anthocyanin pigments accumulate4,5. Here we show that PH5 of petunia encodes a P3A-ATPase proton pump that, unlike other P-type H+-ATPases, resides in the vacuolar membrane. Mutation of PH5 reduces vacuolar acidification in petals, resulting in a blue flower colour and abolishes the accumulation of proanthocyanindins (condensed tannins) in seeds. Expression of PH5 is directly activated by transcription regulators of the anthocyanin pathway, in conjunction with PH3 and PH4. Thus, flower coloration, a key-factor in plant reproduction, involves the coordinated activation of pigment synthesis and a specific pathway for vacuolar acidification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization and isolation of PH5.
Figure 2: PH5 is a P3AH+-ATPase.
Figure 3: Expression pattern and genetic control of PH5.
Figure 4: Immunogold localization of P3A-ATPases in petal cells.
Figure 5: Intracellular localization of PH5–GFP.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Nishi, T. & Forgac, M. The vacuolar (H+)-ATPases — nature's most versatile proton pumps. Nature Rev. Mol. Cell Biol. 3, 94–103 (2002).

    Article  CAS  Google Scholar 

  2. Gaxiola, R. A., Fink, G. R. & Hirschi, K. D. Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiol. 129, 967–973 (2002).

    Article  CAS  Google Scholar 

  3. Palmgren, M. G. Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 817–845 (2001).

    Article  CAS  Google Scholar 

  4. Fukada-Tanaka, S., Inagaki, Y., Yamaguchi, T., Saito, N. & Iida, S. Colour-enhancing protein in blue petals. Nature 407, 581 (2000).

    Article  CAS  Google Scholar 

  5. Quattrocchio, F. et al. PH4 of petunia is an R2R3-MYB protein that activates vacuolar acidification through interactions with Basic-Helix-Loop-Helix transcription factors of the anthocyanin pathway. Plant Cell 18, 1274–1291 (2006).

    Article  CAS  Google Scholar 

  6. Mol, J., Grotewold, E. & Koes, R. How genes paint flowers and seeds. Trends Plant Sci. 3, 212–217 (1998).

    Article  Google Scholar 

  7. Yoshida, K., Toyama-Kato, Y., Kameda, K. & Kondo, T. Sepal color variation of Hydrangea macrophylla and vacuolar pH measured with a proton-selective microelectrode. Plant Cell Physiol. 44, 262–268 (2003).

    Article  CAS  Google Scholar 

  8. Koes, R., Verweij, C. W. & Quattrocchio, F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 5, 236–242 (2005).

    Article  Google Scholar 

  9. Spelt, C., Quattrocchio, F., Mol, J. & Koes, R. ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell 14, 2121–2135. (2002).

    Article  CAS  Google Scholar 

  10. Jorgensen, R. A., Cluster, P. D., English, J., Que, Q. & Napoli, C. A. Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy versus complex T-DNA sequences. Plant Mol. Biol. 31, 957–973 (1996).

    Article  CAS  Google Scholar 

  11. Baxter, I. et al. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol. 132, 618–628 (2003).

    Article  CAS  Google Scholar 

  12. Baxter, I. R. et al. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 102, 2649–2654 (2005).

    Article  CAS  Google Scholar 

  13. de Kerchove d'Exaerde, A. et al. Functional complementation of a null mutation of the yeast Saccharomyces cerevisiae plasma membrane H+-ATPase by a plant H+-ATPase gene. J. Biol. Chem. 270, 23828–23837 (1995).

    Article  CAS  Google Scholar 

  14. Marinova, K. et al. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19, 2023–2038 (2007).

    Article  CAS  Google Scholar 

  15. Spelt, C., Quattrocchio, F., Mol, J. & Koes, R. anthocyanin1 of petunia encodes a basic-Helix Loop Helix protein that directly activates structural anthocyanin genes. Plant Cell 12, 1619–1631 (2000).

    Article  CAS  Google Scholar 

  16. Lefebvre, B. et al. Identification of a Nicotiana plumbaginifolia plasma membrane H+-ATPase gene expressed in the pollen tube. Plant Mol. Biol. 58, 775–787 (2005).

    Article  CAS  Google Scholar 

  17. DeWitt, N. D., Hong, B., Sussman, M. R. & Harper, J. F. Targeting of two Arabidopsis H+-ATPase isoforms to the plasma membrane. Plant Physiol. 112, 833–844 (1996).

    Article  CAS  Google Scholar 

  18. Kim, D. H. et al. Trafficking of phosphatidylinositol 3-phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. Plant Cell 13, 287–301 (2001).

    Article  CAS  Google Scholar 

  19. Fluckiger, R. et al. Vacuolar system distribution in Arabidopsis tissues, visualized using GFP fusion proteins. J Exp Bot 54, 1577–1584 (2003).

    Article  Google Scholar 

  20. Czempinski, K., Frachisse, J. M., Maurel, C., Barbier-Brygoo, H. & Mueller-Roeber, B. Vacuolar membrane localization of the Arabidopsis 'two-pore' K+ channel KCO1. Plant J. 29, 809–820 (2002).

    Article  CAS  Google Scholar 

  21. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  22. Fuchs, R., Schmid, S. & Mellman, I. A possible role for Na+/K+-ATPase in regulating ATP-dependent endosome acidification. Proc. Natl Acad. Sci. USA 86, 539–543 (1989).

    Article  CAS  Google Scholar 

  23. Schumacher, K. et al. The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes Dev. 13, 3259–3270 (1999).

    Article  CAS  Google Scholar 

  24. Li, J. et al. Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310, 121–125 (2005).

    Article  CAS  Google Scholar 

  25. Goodman, C. D., Casati, P. & Walbot, V. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell 16, 1812–1826 (2004).

    Article  CAS  Google Scholar 

  26. Koes, R. E., Quattrocchio, F. & Mol, J. N. M. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16, 123–132 (1994).

    Article  CAS  Google Scholar 

  27. Ando, T. et al. A morphological study of the Petunia integrifolia complex (Solanaceae). Ann. Bot. 96, 887–900 (2005).

    Article  Google Scholar 

  28. Tobeña-Santamaria, R. et al. FLOOZY of petunia is a flavin monooxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev. 6, 753–763 (2002).

    Article  Google Scholar 

  29. Karimi, M., Inze, D. & Depicker, A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002).

    Article  CAS  Google Scholar 

  30. Vermeer, J. E., Van Munster, E. B., Vischer, N. O. & Gadella, T. W., Jr. Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy. J. Microsc. 214, 190–200 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to. Inhwan Hwang (Pohang, Korea) and Katrin Czempinski (Golm, Germany) for AHA2–GFP and KCO1–GFP constructs, and to Dorus Gadella (University of Amsterdam, The Netherlands) for the use of confocal microscopy facilities. We thank Pieter Hoogeveen, Martina Meesters and Daisy Kloos for plant care. This work was supported by a grant from The Netherlands Organization of Scientific Research (NWO-ALW).

Author information

Authors and Affiliations

Authors

Contributions

W.V. and C.S. contributed equally to the experimental work; G.P.S. and J.V. contributed to the GFP localization studies; L.R and F.F. ; performed the immunogold experiments and electron microscopy; F.Q. and R.K. ; conceived the project, performed the genetic analysis and wrote the manuscript.

Corresponding author

Correspondence to Francesca Quattrocchio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 880 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verweij, W., Spelt, C., Di Sansebastiano, GP. et al. An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol 10, 1456–1462 (2008). https://doi.org/10.1038/ncb1805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1805

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing