Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of the Drosophila apoptosome through feedback inhibition

Abstract

Apoptosis is induced by caspases, which are members of the cysteine protease family1. Caspases are synthesized as inactive zymogens and initiator caspases first gain activity by associating with an oligomeric complex of their adaptor proteins, such as the apoptosome2,3. Activated initiator caspases subsequently cleave and activate effector caspases. Although such a proteolytic cascade would predict that a small number of active caspases could irreversibly amplify caspase activity and trigger apoptosis, many cells can maintain moderate levels of caspase activity to perform non-apoptotic roles in cellular differentiation, shape change and migration4. Here we show that the Drosophila melanogaster apoptosome engages in a feedback inhibitory loop, which moderates its activation level in vivo. Specifically, the adaptor protein Apaf-1 lowers the level of its associated initiator caspase Dronc, without triggering apoptosis. Conversely, Dronc lowers Apaf-1 protein levels. This mutual suppression depends on the catalytic site of Dronc and a caspase cleavage site within Apaf-1. Moreover, the Drosophila inhibitor of apoptosis protein 1 (Diap1) is required for this process. We speculate that this feedback inhibition allows cells to regulate the degree of caspase activation for apoptotic and non-apoptotic purposes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Apaf-1 lowers Dronc protein levels in Drosophila tissues.
Figure 2: Overexpression of Apaf-1 and Dronc in eye imaginal discs.
Figure 3: The mutually suppressive relationship between Dronc and Apaf-1 requires Dronc function.
Figure 4: Dronc cleaves Apaf-1 through a caspase cleavage site.
Figure 5: Diap1 prevents Apaf-1 and Dronc from accumulating together in cells.

Similar content being viewed by others

References

  1. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez, J. & Lazebnik, Y. Caspase-9 and Apaf-1 form an active holoenzyme. Genes Dev. 13, 3179–3184 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuranaga, E. & Miura, M. Nonapoptotic functions of caspases: caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol. 17, 135–144.

  5. Yu, X., Wang, L., Acehan, D., Wang, X. & Akey, C. W. Three-dimensional structure of a double apoptosome formed by the Drosophila Apaf-1 related killer. J. Mol. Biol. 355, 577–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez, A. et al. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nature Cell Biol. 1, 272–279 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Zhou, L., Song, Z., Tittel, J. & Steller, H. HAC-1, a Drosophila homolog of APAF-1 and CED-4 functions in developmental and radiation-induced apoptosis. Mol. Cell 4, 745–755 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Kanuka, H. et al. Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Mol. Cell 4, 757–769 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Srivastava, M. et al. ARK, the Apaf-1 related killer in Drosophila, requires diverse domains for its apoptotic activity. Cell Death Differ. 14, 92–102 (2006).

    Article  PubMed  Google Scholar 

  10. Chew, S. K. et al. The apical caspase dronc governs programmed and unprogrammed cell death in Drosophila. Dev. Cell 7, 897–907 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Daish, T. J., Mills, K. & Kumar, S. Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. Dev. Cell 7, 909–915 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Xu, D., Li, Y., Arcaro, M., Lackey, M. & Bergmann, A. The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila. Development 132, 2125–2134 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Yan, N. et al. Structure and activation mechanism of the Drosophila initiator caspase Dronc. J. Biol. Chem. 281, 8667–8674 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Akdemir, F. et al. Autophagy occurs upstream or parallel to the apoptosome during histolytic cell death. Development 113, 1457–1465 (2006).

    Article  Google Scholar 

  15. Clem, R. J., Fechheimer, M. & Miller, K. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254, 1388–1390 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Meier, P., Silke, J., Leevers, S. J. & Evan, G. I. The Drosophila caspase DRONC is regulated by DIAP1. EMBO J. 19, 598–611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Groth, A. C., Fish, M., Nusse, R. & Calos, M. P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–1782 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. White, K. et al. Genetic control of programmed cell death in Drosophila. Science 264, 677–683 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Grether, M. E., Abrams, J. M., Agapite, J., White, K. & Steller, H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 9, 1694–1708 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, P., Nordstrom, W., Gish, B. & Abrams, J. M. grim, a novel cell death gene in Drosophila. Genes Dev. 10, 1773–1782 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Steller, H. Regulation of apoptosis in Drosophila. Cell Death Differ. 15, 1132–1138 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, S. L., Hawkins, C. J., Yoo, S. J., Muller, H. A. & Hay, B. A. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453–63 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO. J. 19, 589–597 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lisi, S., Mazzon, I. & White, K. Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154, 669–678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilson, R. et al. The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nature Cell Biol. 4, 445–450 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Muro, I., Hay, B. A. & Clem, R. J. The Drosophila DIAP1 protein is required to prevent accumulation of a continuously generated, processed form of the apical caspase DRONC. J. Biol. Chem. 277, 49644–49650 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Herman-Bachinsky, Y., Ryoo, H. D., Ciechanover, A. & Gonen, H. Regulation of the Drosophila ubiquitin ligase DIAP1 is mediated via several distinct ubiquitin system pathways. Cell Death Differ. 14, 861–871 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Kornbluth, S. & White, K. Apoptosis in Drosophila: neither fish nor fowl (nor man nor worm). J. Cell Sci. 118, 1779–1787 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  31. Golic, K. G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Struhl, G. & Basler, K. Organizing activity of wingless protein in Drosophila. Cell 72, 527–540 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Ryoo, H. D., Gorenc, T. & Steller, H. Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev. Cell 7, 491–501 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Ryoo, H. D., Domingos, P. M., Kang, M. J. & Steller, H. Unfolded protein response in a Drosophila model for retinal degeneration. EMBO J. 26, 242–252 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Ryoo, H. D., Bergmann, A., Gonen, H., Ciechanover, A. & Steller, H. Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nature Cell. Biol. 4, 432–438 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank John Abrams, Andreas Bergmann, George Jackson, Pascal Meier for fly stocks; David Sabatini for making available the scanning electron microscope; Milton Adesnik, Ramanuj Dasgupta, Zehra Ordulu, David Sabatini, Greg Suh and Jessica Treisman for advice and comments on the manuscript. P.J.S. is supported by an NIH predoctoral training grant 5T32GM007239-32. H.D.R. is a Special Fellow of the Leukemia-Lymphoma Society, a Basil O'Conner Scholar of the March of Dimes Foundation and an Ellison Medical Foundation New Scholar. This work was supported by a grant to H.D.R. from the National Institutes of Health (1RO1GM079425)

Author information

Authors and Affiliations

Authors

Contributions

H.D.R. conceived the project; P.J.S., H.J. and H.D.R. designed the experiments and analysed the data; all authors performed experiments; E.S.R. contributed to the scanning electron microscopy experiments; H.D.R. wrote the paper and all authors read and edited the manuscript.

Corresponding author

Correspondence to Hyung Don Ryoo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 723 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapiro, P., Hsu, H., Jung, H. et al. Regulation of the Drosophila apoptosome through feedback inhibition. Nat Cell Biol 10, 1440–1446 (2008). https://doi.org/10.1038/ncb1803

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing