Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes

Abstract

Movement of meiosis I (MI) chromosomes from the oocyte centre to a subcortical location is the first step in the establishment of cortical polarity. This is required for two consecutive rounds of asymmetric meiotic cell divisions, which generate a mature egg and two polar bodies1. Here we use live-cell imaging and genetic and pharmacological manipulations to determine the force-generating mechanism underlying this chromosome movement. Chromosomes were observed to move toward the cortex in a pulsatile manner along a meandering path. This movement is not propelled by myosin-II-driven cortical flow but is associated with a cloud of dynamic actin filaments trailing behind the chromosomes/spindle. Formation of these filaments depends on the actin nucleation activity of Fmn2, a formin-family protein that concentrates around chromosomes through its amino-terminal region. Symmetry breaking of the actin cloud relative to chromosomes, and net chromosome translocation toward the cortex require actin turnover.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantitative characterization of chromosome movement by 4D tracking.
Figure 2: Testing the requirement for actin polymerization, depolymerization and myosin-II in meiotic chromosome movement.
Figure 3: Visualization of actin in the vicinity of meiotic chromosomes.
Figure 4: Chromosome movement requires the actin nucleation activity of Fmn2 and localization of Fmn2 to the chromosome vicinity.

Similar content being viewed by others

References

  1. Brunet, S. & Maro, B. Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space. Reproduction 130, 801–811 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Yang, H. Y., Mains, P. E. & McNally, F. J. Kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through KCA-1, a novel cargo adapter. J. Cell Biol. 169, 447–457 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Verlhac, M. H. & Dumont, J. Interactions between chromosomes, microfilaments and microtubules revealed by the study of small GTPases in a big cell, the vertebrate oocyte. Mol. Cell Endocrinol. 282, 12–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Lei, Y. & Warrior, R. The Drosophila Lissencephaly1 (DLis1) gene is required for nuclear migration. Dev. Biol. 226, 57–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Miyazaki, A., Kato, K. H. & Nemoto, S. Role of microtubules and centrosomes in the eccentric relocation of the germinal vesicle upon meiosis reinitiation in sea-cucumber oocytes. Dev. Biol. 280, 237–247 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Longo, E., Stamato, F. M., Ferreira, R. & Tapia, O. The catalytic mechanism of serine proteases II: The effect of the protein environment in the alpha-chymotrypsin proton relay system. J. Theor. Biol. 112, 783–798 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Maro, B., Johnson, M. H., Webb, M. & Flach, G. Mechanism of polar body formation in the mouse oocyte: an interaction between the chromosomes, the cytoskeleton and the plasma membrane. J. Embryol. Exp. Morphol. 92, 11–32 (1986).

    CAS  PubMed  Google Scholar 

  8. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Munro, E., Nance, J. & Priess, J. R. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior–posterior polarity in the early C. elegans embryo. Dev. Cell 7, 413–424 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Rosenblatt, J., Cramer, L. P., Baum, B. & McGee, K. M. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 117, 361–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Lenart, P. et al. A contractile nuclear actin network drives chromosome congression in oocytes. Nature 436, 812–818 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Kuo, S. C. & McGrath, J. L. Steps and fluctuations of Listeria monocytogenes during actin-based motility. Nature 407, 1026–1029 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Bernheim-Groswasser, A., Wiesner, S., Golsteyn, R. M., Carlier, M. F. & Sykes, C. The dynamics of actin-based motility depend on surface parameters. Nature 417, 308–311 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Dumont, J. et al. Formin-2 is required for spindle migration and for the late steps of cytokinesis in mouse oocytes. Dev. Biol. 301, 254–265 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Simerly, C., Nowak, G., de Lanerolle, P. & Schatten, G. Differential expression and functions of cortical myosin IIA and IIB isotypes during meiotic maturation, fertilization, and mitosis in mouse oocytes and embryos. Mol. Biol. Cell 9, 2509–2525 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nature Methods 5, 605–607 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Capco, D. G., Gallicano, G. I., McGaughey, R. W., Downing, K. H. & Larabell, C. A. Cytoskeletal sheets of mammalian eggs and embryos: a lattice-like network of intermediate filaments. Cell Motil. Cytoskeleton 24, 85–99 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Leader, B. et al. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nature Cell Biol. 4, 921–928 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Pollard, T. D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36, 451–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Moseley, J. B. et al. A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin. Mol. Biol. Cell 15, 896–907 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Copeland, J. W., Copeland, S. J. & Treisman, R. Homo-oligomerization is essential for F-actin assembly by the formin family FH2 domain. J. Biol. Chem. 279, 50250–50256 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Fehrenbacher, K. L., Boldogh, I. R. & Pon, L. A. Taking the A-train: actin-based force generators and organelle targeting. Trends Cell Biol. 13, 472–477 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Co, C., Wong, D. T., Gierke, S., Chang, V. & Taunton, J. Mechanism of actin network attachment to moving membranes: barbed end capture by N-WASP WH2 domains. Cell 128, 901–913 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Oudenaarden, A. & Theriot, J. A. Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nature Cell Biol. 1, 493–499 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, S. et al. A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Dev. Cell 12, 571–586 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Boggio, E. M., Putignano, E., Sassoe-Pognetto, M., Pizzorusso, T. & Giustetto, M. Visual stimulation activates ERK in synaptic and somatic compartments of rat cortical neurons with parallel kinetics. PLoS ONE 2, e604 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gobert, G. N. & Schatten, H. Improved ultrastructure of the desmosome-intermediate filament complex in MCF-7 breast cancer cells. J. Electron Microsc. 49, 539–544 (2000).

    Article  CAS  Google Scholar 

  29. Egile, C. et al. Mechanism of filament nucleation and branch stability revealed by the structure of the Arp2/3 complex at actin branch junctions. PLoS Biol. 3, e383 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Verlhac, M. H., Lefebvre, C., Guillaud, P., Rassinier, P. & Maro, B. Asymmetric division in mouse oocytes: with or without Mos. Curr. Biol. 10, 1303–1306 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Roland Wedlich-Soldner (Max Plank Institute, Munich) for providing F-Lifeact peptide; Philip Leder (Harvard Medical School, Boston)) for Fmn2−/− mice and full-length Fmn2 cDNA; Marie-Helene Verlhac (Universite Paris VI, Paris) for pBluescript RN3 vector; Eric Jessen (Stowers Institute, Kansa City, applying to all persons mentioned hereafter) for help in site-directed mutagenesis; Rhonda Allen for electron microscopy; Xiaoxue Fan for help with actin preparation; Praveen Suraneni and Manqi Deng for help with the mouse work; Heather Marshall and Michael Durnin for training in oocyte dissection and microinjection; and Stowers Imaging Center for assistance with live imaging; Stacie Hughes for comments on the manuscript. This work was supported by funds to R.L. from the Stowers Institute for Medical Research.

Author information

Authors and Affiliations

Authors

Contributions

H.L. and R.L. designed the experiments, analysed the data and wrote the manuscript; H.L. performed all experiments except the electron microscopy and immuno-electron microscopy experiments, which were performed by F.G.; B.R. assisted with data and statistical analyses; R.L supervised the whole project.

Corresponding author

Correspondence to Rong Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 642 kb)

Supplementary Information

Supplementary Movie 1 (AVI 9796 kb)

Supplementary Information

Supplementary Movie 2 (AVI 6606 kb)

Supplementary Information

Supplementary Movie 3 (AVI 8677 kb)

Supplementary Information

Supplementary Movie 4 (AVI 9828 kb)

Supplementary Information

Supplementary Movie 5 (AVI 1952 kb)

Supplementary Information

Supplementary Movie 6 (AVI 3139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Guo, F., Rubinstein, B. et al. Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes. Nat Cell Biol 10, 1301–1308 (2008). https://doi.org/10.1038/ncb1788

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1788

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing