Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans

Abstract

The spindle-assembly checkpoint ensures that, during mitosis and meiosis, chromosomes do not segregate until they are properly attached to the microtubules of the spindle. Here we show that mdf-1 and mdf-2 are components of the spindle-assembly checkpoint in Caenorhabditis elegans, and are essential for the long-term survival and fertility of this organism. Loss of function of either of these genes leads to the accumulation of a variety of defects, including chromosome abnormalities, X-chromosome non-disjunction or loss, problems in gonad development, and embryonic lethality. Antibodies that recognize the MDF-2 protein localize to nuclei of the cleaving embryo in a cell-cycle-dependent manner. mdf-1, a gene encoding a product that interacts with MDF-2, is required for cell-cycle arrest and proper chromosome segregation in premeiotic germ cells treated with nocodoazole, a microtubule-depolymerizing agent. In the absence of mdf gene products, errors in chromosome segregation arise and accumulate, ultimately leading to genetic lethality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mdf-2 rescues the benomyl sensitivity of mad2 mutants.
Figure 2: Subcellular localization of MDF-2 in mitotically dividing early embryonic cells.
Figure 3: Distribution of MDF-2 in late-stage embryos and germ cells.
Figure 4: Subcellular localization of MDF-2 during meiosis I, meiosis II and meiotic metaphase.
Figure 5: Germline defects in mdf-1 homozygous and mdf-2 RNAi worms.
Figure 6: mdf-1 homozygous worms show defects in nocodazole-induced mitotic cell-cycle arrest.

Similar content being viewed by others

References

  1. Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Rudner, A. D. & Murray, A. W. The spindle assembly checkpoint. Curr. Opin. Cell Biol. 8, 773–780 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Gorbsky, G. J. Cell cycle checkpoints: arresting progress in mitosis. Bioessays 19, 193–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Nicklas, R. B. How cells get the right chromosomes. Science 275, 632–637 (1997).

  5. Hardwick, K. G. The spindle checkpoint. Trends Genet. 14, 1–4 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Li, R. & Murray, A. W. Feedback control of mitosis in budding yeast. Cell 66, 519–531 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274, 246–248 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, R. H., Waters, J. C., Salmon, E. D. & Murray, A. W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274, 242–246 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Gorbsky, G. J., Chen, R. H. & Murray, A. W. Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J. Cell Biol. 141, 1193–1205 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Waters, J. C., Chen, R.-H., Murray, A. W. & Salmon, E. D. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol. 141, 1181–1191 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He, X., Patterson, T. E. & Sazer, S. The Schizosaccharomyces pombe spindle checkpoint protein mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc. Natl Acad. Sci. USA 94, 7965–7970 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, Y., Gorbea, C., Mahaffey, D., Rechsteiner, M. & Benezra, R. MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc. Natl Acad. Sci. USA 94, 12431–12436 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Page, A. M. & Hieter, P. The anaphase-promoting complex: new subunits and regulators. Annu. Rev. Biochem. 68, 583–609 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Fang, G., Yu, H. & Kirschner, M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12, 1871–1883 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hwang, L. H. et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science 279, 1041–1044 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Lorca, T. et al. Fizzy is required for activation of the APC/cyclosome in xenopus egg extracts. EMBO J. 17, 3565–3575 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kallio, M., Weinstein, J., Daum, J. R., Burke, D. J. & Gorbsky, G. J. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J. Cell Biol. 141, 1393–1406 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, S. H., Lin, D. P., Matsumoto, S., Kitazono, A. & Matsumoto, T. Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science 279, 1045–1047 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Wassmann, K. & Benezra, R. Mad2 transiently associates with an APC/p55Cdc complex during mitosis. Proc. Natl Acad. Sci. USA 95, 11193–11198 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Taagepera, S., Campbell, M. S. & Gorbsky, G. J. Cell-cycle-regulated localization of tyrosine and threonine phosphoepitopes at the kinetochores of mitotic chromosomes. Exp. Cell Res. 221, 249–260 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Fukushige, T., Hawkins, M. G. & McGhee, J. D. The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Dev. Biol. 198, 286–302 (1998).

    CAS  PubMed  Google Scholar 

  23. Hardwick, K. G. & Murray, A. W. Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J. Cell Biol. 131, 709–720 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, R. H., Shevchenko, A., Mann, M. & Murray, A. W. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J. Cell Biol. 143, 283–295 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. O’Connell, K. F., Leys, C. M. & White, J. G. A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans. Genetics 149, 1303–1321 (1998).

    PubMed  PubMed Central  Google Scholar 

  27. McCarter, J., Bartlett, B., Dang, T. & Schedl, T. Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Dev. Biol. 181, 121–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Iwasaki, K., McCarter, J., Francis, R. & Schedl, T. emo-1, a Caenorhabditis elegans Sec61p gamma homologue, is required for oocyte development and ovulation. J. Cell Biol. 134, 699–714 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Rose, K. L. et al. The POU gene ceh-18 promotes gonadal sheath cell differentiation and function required for meiotic maturation and ovulation in Caenorhabditis elegans. Dev. Biol. 192, 59–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Berry, L. W., Westlund, B. & Schedl, T. Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 124, 925–936 (1997).

    CAS  PubMed  Google Scholar 

  31. Francis, R., Barton, M. K., Kimble, J. & Schedl, T. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 139, 579–606 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Francis, R., Maine, E. & Schedl, T. Analysis of the multiple roles of gld-1 in germline development: interactions with the sex determination cascade and the glp-1 signaling pathway. Genetics 139, 607–630 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kadyk, L. C. & Kimble, J. Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development 125, 1803–1813 (1998).

    CAS  PubMed  Google Scholar 

  34. Qiao, L. et al. Enhancers of glp-1, a gene required for cell-signaling in Caenorhabditis elegans, define a set of genes required for germline development. Genetics 141, 551–569 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Seydoux, G., Schedl, T. & Greenwald, I. Cell-cell interactions prevent a potential inductive interaction between soma and germline in C. elegans. Cell 61, 939–951 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Graham, P. L., Schedl, T. & Kimble, J. More mog genes that influence the switch from spermatogenesis to oogenesis in the hermaphrodite germ line of Caenorhabditis elegans. Dev. Genet. 14, 471–484 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Graham, P. L. & Kimble, J. The mog-1 gene is required for the switch from spermatogenesis to oogenesis in Caenorhabditis elegans. Genetics 133, 919–931 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tugendreich, S., Tomkiel, J., Earnshaw, W. & Hieter, P. CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81, 261–268 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Jin, D.-Y., Spencer, F. & Jeang, K.-T. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93, 81–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Hodgkin, J. A., Horvitz, H. R. & Brenner, S. Nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics 91, 67–94 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hyman, A. A. & White, J. G. Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J. Cell Biol. 105, 2123–2135 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. Dasso, M. & Newport, J. W. Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus. Cell 61, 811–823 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Minshull, J., Sun, H., Tonks, N. K. & Murray, A. W. A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell 79, 475–486 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Basu, J. et al. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J. Cell Biol. 146, 13–28 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Stearns, T., Hoyt, M. A. & Botstein, D. Yeast mutants sensitive to antimicrotubule drugs define three genes that affect microtubule function. Genetics 124, 251–262 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mumberg, D., Müller, R. & Funk, M. Regulatable promoters of Saccharomyces cerevisiae: comparision of tanscriptional activity and their use for heterologous expression. Nucleic Acids Res. 22, 5767–5768 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Albertson, D. G. Formation of the first cleavage spindle in nematode embryos. Dev. Biol. 101, 61–72 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Hieter, A. Murray, B. Nicklas, A. Page, D. Shakes and D. Baillie for discussion and comments on the manuscript. This research was supported by the Natural Sciences and Engineering Research Council of Canada and the British Columbia Health Research Foundation.

Correspondence and requests for materials should be addressed to A.M.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Rose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitagawa, R., Rose, A. Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nat Cell Biol 1, 514–521 (1999). https://doi.org/10.1038/70309

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing