Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Co-translational folding of an alphavirus capsid protein in the cytosol of living cells

Abstract

The Semliki Forest virus capsid protein contains a chymotrypsin-like protease domain that must fold before it can autocatalytically cleave the protein from a larger polyprotein precursor. Here we analyse this cleavage in living mammalian and prokaryotic cells, and find that it occurs immediately after the emergence of the protease domain from the ribosome during protein synthesis. The acquisition of the native conformation of this domain thus occurs rapidly and at the same time as translation. It does not require termination of translation or release from the ribosome, and nor does it involve Hsp70 binding. These results provide direct evidence that protein folding can occur co-translationally in the cytosol of both prokaryotes and eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Co-translational folding and cleavage of C protein in living cells.
Figure 2: Effect of translation inhibitors on C-protein cleavage.
Figure 3: Association of Hsp70 with SFV structural proteins.
Figure 4: Folding of C-protein protease domain in the bacterial cytosol.

Similar content being viewed by others

References

  1. Anfinsen, C. B. & Scheraga, H. A. Experimental and theoretical aspects of protein folding. Adv. Protein Chem. 29, 205–300 ( 1975).

    Article  CAS  Google Scholar 

  2. Fedorov, A. N. & Baldwin, T. O. Cotranslational protein folding . J. Biol. Chem. 272, 32715– 32718 (1997).

    Article  CAS  Google Scholar 

  3. Netzer, W. J. & Hartl, F. U. Protein folding in the cytosol: chaperonin-dependent and independent mechanisms. Trends Biochem. Sci. 23, 68–73 ( 1998).

    Article  CAS  Google Scholar 

  4. Hardesty, B., Tsalkova, T. & Kramer, G. Co-translational folding. Curr. Opin. Struct. Biol. 3, 1039–1045 ( 1999).

    Google Scholar 

  5. Bergman, L. W. & Kuehl, W. M. Formation of an intrachain disulfide bond on nascent immunoglobulin light chains. J. Biol. Chem. 254, 8869–8876 (1979).

    CAS  PubMed  Google Scholar 

  6. Peters, T. Jr & Davidson, L. K. The biosynthesis of rat serum albumin. In vivo studies on the formation of the disulfide bonds. J. Biol. Chem. 257, 8847–8853 (1982).

    CAS  PubMed  Google Scholar 

  7. Morrison, T. G. & McGinnes, L. W. Role of cotranslational disulfide bond formation in the folding of the hemagglutinin-neuraminidase protein of Newcastle disease virus. Virology 224, 465–476 (1996).

    Article  Google Scholar 

  8. Chen, W., Helenius, J., Braakman, I. & Helenius, A. Cotranslational folding and calnexin binding during glycoprotein synthesis . Proc. Natl Acad. Sci. USA 92, 6229– 6233 (1995).

    Article  CAS  Google Scholar 

  9. Beckmann, R. P., Mizzen, L. A. & Welch, W. J. Interaction of hsp70 with newly synthesized proteins: implications for folding and assembly. Science 248, 850–853 (1990).

    Article  CAS  Google Scholar 

  10. Netzer, W. J. & Hartl, F. U. Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 388, 343–349 (1997).

    Article  CAS  Google Scholar 

  11. Kudlicki, W., Chirgwin, W., Kramer, G. & Hardesty, B. Folding of an enzyme into an active conformation while bound as peptidyl-tRNA to the ribosome . Biochemistry 34, 14284– 14287 (1995).

    Article  CAS  Google Scholar 

  12. Fedorov, A. N., Friguet, B., Djavadi-Ohaniance, L., Alakhov, Y. B. & Goldberg, M. E. Folding on the ribosome of Escherichia coli tryptophan synthase beta subunit nascent chains probed with a conformation-dependent monoclonal antibody. J. Mol. Biol. 228, 351–358 ( 1992).

    Article  CAS  Google Scholar 

  13. Kolb, V. A., Makeyev, E. V. & Spirin, A. S. Folding of firefly luciferase during translation in a cell-free system. EMBO J. 13, 3631– 3637 (1994).

    Article  CAS  Google Scholar 

  14. Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F. H. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111– 117 (1994).

    Article  CAS  Google Scholar 

  15. Fedorov, A. N. & Baldwin, T. O. Contribution of cotranslational folding to the rate of formation of native protein structure . Proc. Natl Acad. Sci. USA 92, 1227– 1231 (1995).

    Article  CAS  Google Scholar 

  16. Strauss, J. H. & Strauss, E. G. The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58, 491–562 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi, H. K. et al. Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature 354, 37–43 (1991).

    Article  CAS  Google Scholar 

  18. Choi, H. K., Lu, G., Lee, S., Wengler, G. & Rossmann, M. G. Structure of Semliki Forest virus core protein. Proteins 27, 345–359 ( 1997).

    Article  CAS  Google Scholar 

  19. Hahn, C. S., Strauss, E. G. & Strauss, J. H. Sequence analysis of three Sindbis virus mutants temperature-sensitive in the capsid protein autoprotease. Proc. Natl Acad. Sci. USA 82, 4648–4652 (1985).

    Article  CAS  Google Scholar 

  20. Melancon, P. & Garoff, H. Processing of the Semliki Forest virus structural polyprotein: role of the capsid protease. J. Virol. 61, 1301–1309 ( 1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hahn, C. S. & Strauss, J. H. Site-directed mutagenesis of the proposed catalytic amino acids of the Sindbis virus capsid protein autoprotease . J. Virol. 64, 3069–3073 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Braakman, I., Hoover-Litty, H., Wagner, K. R. & Helenius, A. Folding of influenza hemagglutinin in the endoplasmic reticulum. J. Cell Biol. 114, 401–411 (1991).

    Article  CAS  Google Scholar 

  23. Forsell, K., Suomalainen, M. & Garoff, H. Structure-function relation of the NH2-terminal domain of the Semliki Forest virus capsid protein. J. Virol. 69, 1556–1563 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Aliperti, G. & Schlesinger, M. J. Evidence for an autoprotease activity of Sindbis virus capsid protein. Virology 90, 366–369 (1978).

    Article  CAS  Google Scholar 

  25. Purvis, I. J. et al. The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. J. Mol. Biol. 193, 413–417 (1987).

    Article  CAS  Google Scholar 

  26. Whitley, P., Nilsson, I. & von Heijne, G. A nascent secretory protein may traverse the ribosome/endoplasmic reticulum translocase complex as an extended chain. J. Biol. Chem. 271, 6241–6244 ( 1996).

    Article  CAS  Google Scholar 

  27. Matlack, K. E. & Walter, P. The 70 carboxyl-terminal amino acids of nascent secretory proteins are protected from proteolysis by the ribosome and the protein translocation apparatus of the endoplasmic reticulum membrane. J. Biol. Chem. 270, 6170– 6180 (1995).

    Article  CAS  Google Scholar 

  28. Nathans, D. Puromycin inhibition of protein synthesis: incorporation of puromycin into peptide chains. Proc. Natl Acad. Sci. USA 51, 585–592 (1964).

    Article  CAS  Google Scholar 

  29. Eggers, D. K., Welch, W. J. & Hansen, W. J. Complexes between nascent polypeptides and their molecular chaperones in the cytosol of mammalian cells. Mol. Biol. Cell. 8, 1559–1573 ( 1997).

    Article  CAS  Google Scholar 

  30. Teter, S. A. et al. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97, 755–765 (1999).

    Article  CAS  Google Scholar 

  31. Grollman, A. P. & Stewart, M. L. Inhibition of the attachment of messenger ribonucleic acid to ribosomes. Proc. Natl Acad. Sci. USA 61, 719– 725 (1968).

    Article  CAS  Google Scholar 

  32. Garoff, H., Simons, K. & Dobberstein, B. Assembly of the Semliki Forest virus membrane glycoproteins in the membrane of the endoplasmic reticulum in vitro. J. Mol. Biol. 124, 587–600 (1978).

    Article  CAS  Google Scholar 

  33. Makeyev, E. V., Kolb, V. A. & Spirin, A. S. Enzymatic activity of the ribosome-bound nascent peptide. FEBS Lett. 378, 166– 170 (1996).

    Article  CAS  Google Scholar 

  34. Greiser-Wilke, I., Moenning, V., Kaaden, O. R. & Figueiredo, L. T. Most alphaviruses share a conserved epitopic region on their nucleocapsid protein. J. Gen. Virol. 70, 743– 748 (1989).

    Article  CAS  Google Scholar 

  35. Zahn, R. et al. Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Proc. Natl Acad. Sci. USA 93, 15024–15029 (1996).

    Article  CAS  Google Scholar 

  36. Witholt, B. et al. An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal. Biochem. 74, 160–170 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Mezzacasa and C. Schnatwinkel for assistance, and L. Ellgaard and M. Molinari for critically reading the manuscript. This work was supported by grants from the Swiss National Science Foundation and the Swiss Federal Institute of Technology-Zurich.

Correspondence and request for materials should be addressed to A.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Helenius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicola, A., Chen, W. & Helenius, A. Co-translational folding of an alphavirus capsid protein in the cytosol of living cells. Nat Cell Biol 1, 341–345 (1999). https://doi.org/10.1038/14032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/14032

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing