Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An NSF function distinct from ATPase-dependent SNARE disassembly is essential for Golgi membrane fusion

Abstract

The precise biochemical role of N-ethylmaleimide-sensitive factor (NSF) in membrane fusion mediated by SNARE proteins is unclear. To provide further insight into the function of NSF, we have introduced a mutation into mammalian NSF that, in Drosophila dNSF-1, leads to temperature-sensitive neuroparalysis. This mutation is like the comatose mutation and renders the mammalian NSF temperature sensitive for fusion of postmitotic Golgi vesicles and tubules into intact cisternae. Unexpectedly, at the temperature that is permissive for membrane fusion, this mutant NSF binds to, but cannot disassemble, SNARE complexes and exhibits almost no ATPase activity. A well-charaterized NSF mutant containing an inactivating point mutation in the catalytic site of its ATPase domain is equally active in the Golgi-reassembly assay. These data indicate that the need for NSF during postmitotic Golgi membrane fusion may be distinct from its ATPase-dependent ability to break up SNARE pairs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fusion of postmitotic Golgi membranes in the presence of wild-type NSF or NSF(G274E).
Figure 2: Stability of NSF complexes and NSF at different temperatures.
Figure 3: Disassembly of 20S complexes containing synaptic or Golgi SNAREs.
Figure 4: ATPase activity of the NSF proteins.
Figure 5: Negative staining of wild-type and mutant NSF in the presence of different nucleotides.
Figure 6: Cisternal regrowth in the presence of ATPase catalytic-site mutants of NSF.

Similar content being viewed by others

References

  1. Confalonieri, F. & Duguet, M. A 200-amino acid ATPase module in search of a basic function. Bioessays 17, 639–650 (1995).

    Article  CAS  Google Scholar 

  2. Patel, S. & Latterich, M. The AAA team: related ATPases with diverse functions. Trends Cell Biol. 8, 65–71 (1998).

    Article  CAS  Google Scholar 

  3. Block, M. R., Glick, B. S., Wilcox, C. A., Wieland, F. T. & Rothman, J. E. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc. Natl Acad. Sci. USA 85, 7852–7856 ( 1988).

    Article  CAS  Google Scholar 

  4. Wilson, D. W. et al. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 339, 355–359 (1989).

    Article  CAS  Google Scholar 

  5. Malhotra, V., Orci, L., Glick, B. S., Block, M. R. & Rothman, J. E. Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack . Cell 54, 221–227 (1988).

    Article  CAS  Google Scholar 

  6. Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  CAS  Google Scholar 

  7. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion . Nature 362, 318–324 (1993).

    Article  Google Scholar 

  8. Clary, D. O., Griff, I. C. & Rothman, J. E. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61, 709–721 (1990).

    Article  CAS  Google Scholar 

  9. Ferro-Novick, S. & Jahn, R. Vesicle fusion from yeast to man. Nature 370, 191– 193 (1994).

    Article  CAS  Google Scholar 

  10. Sudhof, T. C. The synaptic vesicle cycle: a cascade of protein–protein interactions . Nature 375, 645–653 (1995).

    Article  CAS  Google Scholar 

  11. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution . Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  12. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 ( 1998).

    Article  CAS  Google Scholar 

  13. Peters, C. & Mayer, A. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396, 575–579 ( 1998).

    Article  CAS  Google Scholar 

  14. Ungermann, C., Sato, K. & Wickner, W. Defining the functions of trans-SNARE pairs. Nature 396, 543–548 ( 1998).

    Article  CAS  Google Scholar 

  15. Fleming, K. G. et al. A revised model for the oligomeric state of the N-ethylmaleimide-sensitive fusion protein. J. Biol. Chem. 273, 15675 –15681 (1998).

    Article  CAS  Google Scholar 

  16. Hanson, P. I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J. E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523– 535 (1997).

    Article  CAS  Google Scholar 

  17. Tagaya, M., Wilson, D. W., Brunner, M., Arango, N. & Rothman, J. E. Domain structure of an N-ethylmaleimide-sensitive fusion protein involved in vesicular transport. J. Biol. Chem. 268, 2662–2666 ( 1993).

    CAS  PubMed  Google Scholar 

  18. Nagiec, E. E., Bernstein, A. & Whiteheart, S. W. Each domain of the N-ethylmaleimide-sensitive fusion protein contributes to its transport activity. J. Biol. Chem. 270, 29182–29188 (1995).

    Article  CAS  Google Scholar 

  19. Whiteheart, S.W. et al. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol. 126, 945–954 ( 1994).

    Article  CAS  Google Scholar 

  20. Otto, H., Hanson, P. I. & Jahn, R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc. Natl Acad. Sci. USA 94, 6197–6201 (1997).

    Article  CAS  Google Scholar 

  21. Ungermann, C., Nichols, B. J., Pelham, H. R. & Wickner, W. A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolate vacuoles, is disassembled and activated for docking and fusion. J. Cell Biol. 140, 61–69 (1998).

    Article  CAS  Google Scholar 

  22. Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF)-driven release of Sec17p (α-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83–94 (1996).

    Article  CAS  Google Scholar 

  23. Wilson, D. W., Whiteheart, S. W., Wiedmann, M., Brunner, M. & Rothman, J. E. A multisubunit particle implicated in membrane fusion. J. Cell Biol. 117, 531 –538 (1992).

    Article  CAS  Google Scholar 

  24. Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    Article  Google Scholar 

  25. Xu, Z., Sato, K. & Wickner, W. LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion . Cell 93, 1125–1134 (1998).

    Article  CAS  Google Scholar 

  26. Xu, Z., Mayer, A., Muller, E. & Wickner, W. A heterodimer of thioredoxin and I(B)2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. J. Cell Biol. 136, 299– 306 (1997).

    Article  CAS  Google Scholar 

  27. Barlowe, C. Coupled ER to Golgi transport reconstituted with purified cytosolic proteins . J. Cell Biol. 139, 1097– 1108 (1997).

    Article  CAS  Google Scholar 

  28. Cabrera-poch, N., Pepperkok, R. & Shima, D. T. Inheritance of the mammalian Golgi apparatus during the cell cycle. Biochim. Biophys. Acta 1404, 139–151 (1998).

    Article  CAS  Google Scholar 

  29. Lucocq, J. M., Pryde, J. G., Berger, E. G. & Warren, G. A mitotic form of the Golgi apparatus in HeLa cells. J. Cell Biol. 104, 865–874 ( 1987).

    Article  CAS  Google Scholar 

  30. Lucocq, J. M., Berger, E. G. & Warren, G. Mitotic Golgi fragments in HeLa cells and their role in the reassembly pathway. J. Cell Biol. 109, 463–474 (1989).

    Article  CAS  Google Scholar 

  31. Rabouille, C., Levine, T. P., Peters, J. M. & Warren, G. An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82, 905– 914 (1995).

    Article  CAS  Google Scholar 

  32. Siddiqi, O. & Benzer, S. Neurophysiological defects in termperature-sensitive paralytic mutants of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 73, 3253–3257 (1976).

    Article  CAS  Google Scholar 

  33. Pallanck, L., Ordway, R. W. & Ganetzky, B. A Drosophila NSF mutant. Nature 376, 25 (1995).

    Article  CAS  Google Scholar 

  34. Littleton, J. T. et al. Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and diassembly. Neuron 21, 401–413 ( 1998).

    Article  CAS  Google Scholar 

  35. Rabouille, C., Misteli, T., Watson, R. & Warren, G. Reassembly of Golgi stacks from mitotic Golgi fragments in a cell-free system. J. Cell Biol. 129, 605–618 ( 1995).

    Article  CAS  Google Scholar 

  36. Rabouille, C. et al. Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 92, 603– 610 (1998).

    Article  CAS  Google Scholar 

  37. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051 –5061 (1994).

    Article  CAS  Google Scholar 

  38. Steel, G. J. & Morgan, A. Selective stimulation of the D1 ATPase domain of N-ethylmaleimide-sensitive fusion protein (NSF) by soluble NSF attachment proteins. FEBS Lett. 423, 113– 116 (1998).

    Article  CAS  Google Scholar 

  39. Colombo, M. I., Taddese, M., Whiteheart, S. W. & Stahl, P. D. A possible predocking attachment site for N-ethylmaleimide-sensitive fusion protein. Insights from in vitro endosome fusion. J. Biol. Chem. 271, 18810–18816 ( 1996).

    Article  CAS  Google Scholar 

  40. Lenzen, C.U., Steinman, D., Whiteheart, S. W. & Weis, W. I. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94, 525– 536 (1998).

    Article  CAS  Google Scholar 

  41. Cao, X. C., Ballew, N. & Barlowe, C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J. 17, 2156–2165 (1998).

    Article  CAS  Google Scholar 

  42. Hong, R. M. et al. Association of N-ethylmaleimide-sensitive factor with synaptic vesicles. FEBS Lett. 350, 253– 257 (1994).

    Article  CAS  Google Scholar 

  43. Steel, G. J., Tagaya, M. & Woodman, P. G. Association of the fusion protein NSF with clathrin-coated vesicle membranes. EMBO J. 15, 745– 752 (1996).

    Article  CAS  Google Scholar 

  44. Otter-Nilsson, M., Hendriks, R., Pecheur, E. I., Hoekstra, D. & Nilsson, T. Cytosolic ATPases, p97 and NSF, are sufficient to mediate rapid membrane fusion. EMBO J. 18, 2074–2083 (1999).

    Article  CAS  Google Scholar 

  45. Inoue, A., Obata, K. & Akagawa, K. Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. J. Biol. Chem. 267, 10613–10619 (1992).

    CAS  PubMed  Google Scholar 

  46. Edelmann, L., Hanson, P. I., Chapman, E. R. & Jahn, R. Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine. EMBO J. 14, 224–231 (1995).

    Article  CAS  Google Scholar 

  47. Hui, N., Nakamura, N., Slusarewicz, P. & Warren, G. in Cell Biology: A Laboratory Handbook (ed. Celis, J.) 46– 55 (Academic, London, 1998).

    Google Scholar 

  48. Hui, N. et al. An isoform of the Golgi t-SNARE, syntaxin 5, with an endoplasmic reticulum retrieval signal. Mol. Biol. Cell 8, 1777–1787 (1997).

    Article  CAS  Google Scholar 

  49. Nagahama, M. et al. A v-SNARE implicated in intra-Golgi transport. J. Cell Biol. 133, 507–516 (1996).

    Article  CAS  Google Scholar 

  50. Huttner, W. B., Schiebler, W., Greengard, P. & De Camilli, P. Synapsin I (protein I), a nerve terminal specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol. 96, 1374– 1388 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Whiteheart for providing the CHO NSF cDNA; N. Bishop and P. Woodman for providing the D1 and D2 ATPase mutants; T. Söllner for the purified anti-GOS-28 antibodies; M. Lowe for purified p115; and H. Meyer and M. Lowe for critical reading of the manuscript. J.M.M.M. was supported by the Boehringer Ingelheim Fonds.

Correspondence and requests for materials should be addressed to D.T.S.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, J., Rabouille, C., Newman, R. et al. An NSF function distinct from ATPase-dependent SNARE disassembly is essential for Golgi membrane fusion. Nat Cell Biol 1, 335–340 (1999). https://doi.org/10.1038/14025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/14025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing