Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The lectin ERGIC-53 is a cargo transport receptor for glycoproteins

Abstract

Soluble secretory proteins are transported from the endoplasmic reticulum (ER) to the ER–Golgi intermediate compartment (ERGIC) in vesicles coated with COP-II coat proteins. The sorting of secretory cargo into these vesicles is thought to involve transmembrane cargo-receptor proteins. Here we show that a cathepsin-Z-related glycoprotein binds to the recycling, mannose-specific membrane lectin ERGIC-53. Binding occurs in the ER, is carbohydrate- and calcium-ion-dependent and is affected by untrimmed glucose residues. Binding does not, however, require oligomerization of ERGIC-53, although oligomerization is required for exit of ERGIC-53 from the ER. Dissociation of ERGIC-53 occurs in the ERGIC and is delayed if ERGIC-53 is mislocalized to the ER. These results strongly indicate that ERGIC-53 may function as a receptor facilitating ER-to-ERGIC transport of soluble glycoprotein cargo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crosslinking of ERGIC-53 to a 40K glycoprotein doublet identified as a cathepsin-Z-related protein (catZr).
Figure 2: Crosslinking of ERGIC-53 and catZr depends on a functional CRD of ERGIC-53 and on glycosylation of catZr.
Figure 3: CatZr binds to ERGIC-53 in the ER and dissociates in the ERGIC.
Figure 4: Role of calcium, glucose trimming and mannose trimming of catZr and oligomerization of ERGIC-53 on catZr–ERGIC-53 interaction, probed by crosslinking.

Similar content being viewed by others

References

  1. Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526–1533 ( 1996).

    Article  CAS  Google Scholar 

  2. Hauri, H.-P. & Schweizer, A. in Handbook of Physiology: Cell Physiology (eds Hoffman, J. F. & Jamieson, J. D.) 605– 647 (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  3. Glick, B. S. & Malhotra, V. The curious status of the Golgi apparatus. Cell 95, 883– 889 (1998).

    Article  CAS  Google Scholar 

  4. Bannykh, S. I. & Balch, W. E. Membrane dynamics at the endoplasmic reticulum – Golgi interface. J. Cell Biol. 138 , 1–4 (1997).

    Article  CAS  Google Scholar 

  5. Mitsuno, M. & Singer, S. J. A soluble secretory protein is first concentrated in the endoplasmic reticulum before transfer to the Golgi apparatus. Proc. Natl Acad. Sci. USA 90, 5732–5736 (1993).

    Article  Google Scholar 

  6. Balch, W. E., McCaffery, J. M., Plutner, H. & Farquhar, M. G. Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum. Cell 76, 841–852 (1994).

    Article  CAS  Google Scholar 

  7. Rexach, M. F., Latterich, M. & Schekman, R. W. Characteristics of endoplasmic reticulum-derived transport vesicles. J. Cell Biol. 126, 1133 –1148 (1994).

    Article  CAS  Google Scholar 

  8. Herrmann, J. M., Malkus, P. & Schekman, R. Out of the ER — outfitters, escorts and guides . Trends Cell Biol. 9, 5– 7 (1999).

    Article  CAS  Google Scholar 

  9. Klumperman, J. et al. The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. J. Cell Sci. 111, 3411–3425 (1998).

    CAS  PubMed  Google Scholar 

  10. Fiedler, K. & Simons, K. A putative novel class of animal lectins in the secretory pathway homologous to leguminous lectins. Cell 77, 625–626 ( 1994).

    Article  CAS  Google Scholar 

  11. Itin, C., Roche, A. C., Monsigny, M. & Hauri, H.-P. ERGIC-53 is a functional mannose-selective and calcium-dependent human homologue of leguminous lectins. Mol. Biol. Cell 7, 483–493 (1996).

    Article  CAS  Google Scholar 

  12. Kappeler, F., Klopfenstein, D., Foguet, M., Paccaud, J.-P. & Hauri, H.-P. The recycling of ERGIC-53 in the early secretory pathway. J. Biol. Chem. 272, 31801–31808 (1997).

    Article  CAS  Google Scholar 

  13. Tisdale, E. J., Plutner, H., Matteson, J. & Balch, W. E. p53/p58 binds COPI and is required for selective transport through the early secretory pathway. J. Cell Biol. 137, 581 –593 (1997).

    Article  CAS  Google Scholar 

  14. Vollenweider, F., Kappeler, F., Itin, C. & Hauri, H.-P. Mistargeting of the lectin ERGIC-53 to the endoplasmic reticulum of HeLa cells impairs the secretion of a lysosomal enzyme. J. Cell Biol. 142, 377–389 (1998).

    Article  CAS  Google Scholar 

  15. Nichols, W. C. et al. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93, 61–70 ( 1998).

    Article  CAS  Google Scholar 

  16. Schimmöller, F. et al. The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBO J. 14, 1329–1339 ( 1995).

    Article  Google Scholar 

  17. Fiedler, K., Veit, M., Stamnes, M. A. & Rothman, J. E. Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science 273, 1396–1399 ( 1996).

    Article  CAS  Google Scholar 

  18. Dominguez, M. et al. gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. J. Cell Biol. 140, 751–765 (1998).

    Article  CAS  Google Scholar 

  19. Bremser, M. et al. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96, 495 –506 (1999).

    Article  CAS  Google Scholar 

  20. Andersson, H., Kappeler, K. & Hauri, H.-P. Protein targeting to endoplasmic reticulum by dilysine signals involves direct retention in addition to retrieval. J. Biol Chem. 274, 15080–15084 (1999).

    Article  CAS  Google Scholar 

  21. Santamaria, I., Velasco, G., Pendas, A. M., Fueyo, A. & Lopez-Otin, C. Cathepsin Z, a novel human cysteine proteinase with a short propeptide domain and a unique chromosomal location . J. Biol Chem. 273, 16816– 16823 (1998).

    Article  CAS  Google Scholar 

  22. Klopfenstein, D. R. C., Kappeler, F. & Hauri, H.-P. A novel direct interaction of endoplasmic reticulum with microtubules. EMBO J. 17, 6168– 6177 (1998).

    Article  CAS  Google Scholar 

  23. Trombetta, E. S. & Helenius, A. Lectins as chaperones in glycoprotein folding. Curr. Opin. Struct. Biol. 8, 587–592 (1998).

    Article  CAS  Google Scholar 

  24. Cacan, R. & Verbert, A. Free and N-linked oligomannosides as markers of the quality control of newly synthesized glycoproteins. Biochem. Biophys. Res. Commun. 258, 1– 5 (1999).

    Article  CAS  Google Scholar 

  25. Lahtinen, U., Svensson, K. & Pettersson, R. F. Mapping of structural determinants for the oligomerization of p58, a lectin-like protein of the intermediate compartment and cis-Golgi . Eur. J. Biochem. 260, 392– 397 (1999).

    Article  CAS  Google Scholar 

  26. Zhang, T., Wong, S. H., Tang, B. L., Xu, Y. & Hong, W. Morphological and functional association of Sec22b/ERS-24 with the pre-Golgi intermediate compartment. Mol. Biol. Cell 10, 435–453 (1999).

    Article  CAS  Google Scholar 

  27. Powers, J. & Barlowe, C. Transport of ax12p depends on erv14p, an ER-vesicle protein related to the Drosophila cornichon gene product . J. Cell Biol. 142, 1209– 1222 (1998).

    Article  CAS  Google Scholar 

  28. Schröder, S., Schröder, F., Singer-Krüger, B. & Riezman, H. The Golgi-localization of yeast Emp47p depends on its di-lysine motif but is not affected by the ret1-1 mutation in alpha-COP. J. Cell Biol. 131, 895–912 ( 1995).

    Article  Google Scholar 

  29. Fiedler, K., Parton, R. G., Kellner, R., Etzold, T. & Simons, K. VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells. EMBO J 13, 1729–1740 ( 1994).

    Article  CAS  Google Scholar 

  30. Hara-Kuge, S., Ohkura, T., Seko, A., & Yamashita, K. Vesicular-integral membrane protein, VIP36, recognizes high-mannose type glycans containing alpha1-2 mannosyl residues in MDCK cells. Glycobiology 9, 833–839 (1999).

    Article  CAS  Google Scholar 

  31. Wieland, F. T., Gleason, M. L., Serafini, T. A. & Rothman, J. E. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 50, 289–300 ( 1987).

    Article  CAS  Google Scholar 

  32. Itin, C., Schindler, R. & Hauri, H.-P. Targeting of protein ERGIC-53 to the ER/ERGIC/cis-Golgi recycling pathway. J. Cell Biol. 131, 57 –67 (1995).

    Article  CAS  Google Scholar 

  33. Schweizer, A., Fransen, J. A. M., Bächi, T., Ginsel L. & Hauri H.-P. Identification, by a monoclonal antibody, of a 53 kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J. Cell Biol. 107, 1643–1653 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Bucher for technical assistance and M. Farquhar and W. Hong for providing antibodies to mannosidase II and Sec22b, respectively. H.A. was supported by a long-term EMBO fellowship. This work was supported by the Cantons of Basel and the Swiss National Science Foundation.

Correspondence and requests for materials should be addressed to H.-P.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Hauri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appenzeller, C., Andersson, H., Kappeler, F. et al. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol 1, 330–334 (1999). https://doi.org/10.1038/14020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/14020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing