Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos

Abstract

The positioning of centrosomes, or microtubule-organizing centres, within cells plays a critical part in animal development. Here we show that, in Drosophila embryos undergoing mitosis, the positioning of centrosomes within bipolar spindles and between daughter nuclei is determined by a balance of opposing forces generated by a bipolar kinesin motor, KLP61F, that is directed to microtubule plus ends, and a carboxy-terminal kinesin motor, Ncd, that is directed towards microtubule minus ends. This activity maintains the spacing between separated centrosomes during prometaphase and metaphase, and repositions centrosomes and daughter nuclei during late anaphase and telophase. Surprisingly, we do not observe a function for KLP61F in the initial separation of centrosomes during prophase. Our data indicate that KLP61F and Ncd may function by crosslinking and sliding antiparallel spindle microtubules in relation to one another, allowing KLP61F to push centrosomes apart and Ncd to pull them together.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Centrosomes within bipolar spindles separate but then collapse together following the inhibition of the bipolar kinesin KLP61F.
Figure 2: Mitotic centrosomes associated with adjacent spindles interact through microtubule bundles to slide together and form large arrays of collapsed mono-asters in the absence of KLP61F function.
Figure 3: Positioning of mitotic centrosomes and daughter nuclei involves an interaction between bipolar kinesins and C-terminal kinesins.
Figure 4: The relative positioning of mitotic centrosomes is determined by a balance of microtubule–microtubule sliding motors.

Similar content being viewed by others

References

  1. Rappaport, R. in Cytokinesis in Animal Cells (eds Barlow, P. W., Bard, J. B. L., Green, P. B. & Kirk, D. L.) 1–386 (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  2. Sullivan, W. & Theurkauf, W. E. The cytoskeleton and morphogenesis of the early Drosophila embryo. Curr. Opin. Cell Biol. 7, 18–22 (1995).

    Article  CAS  Google Scholar 

  3. Hoyt, M. A. & Geiser, J. R. Genetic analysis of the mitotic spindle. Annu. Rev. Genet. 30, 7– 33 (1996).

    Article  CAS  Google Scholar 

  4. Vale, R. D. & Fletterick, R. J. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745 –777 (1997).

    Article  CAS  Google Scholar 

  5. Enos, A. P. & Morris, N. R. Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in Aspergillus nidulans. Cell 60, 1019– 1027 (1990).

    Article  CAS  Google Scholar 

  6. Roof, D. M., Meluh, P. B. & Rose, M. D. Kinesin-related proteins required for assembly of the mitotic spindle. J. Cell. Biol. 118, 95–108 (1992).

    Article  CAS  Google Scholar 

  7. Hoyt, M. A., He, L., Loo K. K. & Saunders, W. S. Two Saccharomyces cerevisiae kinesin-related gene-products required for mitotic spindle assembly. J. Cell. Biol. 118, 109–120 ( 1992).

    Article  CAS  Google Scholar 

  8. Saunders, W. S. & Hoyt, M. A. Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 70, 451–458 ( 1992).

    Article  CAS  Google Scholar 

  9. Hagan, I. & Yanagida, M. Novel potential mitotic motor protein encoded by the fission yeast Cut7+ gene. Nature 347 , 563–566 (1990).

    Article  CAS  Google Scholar 

  10. Hagan, I. & Yanagida, M. Kinesin-related Cut7 protein associates with mitotic and meiotic spindles in fission yeast. Nature 356, 74–76 (1992).

    Article  CAS  Google Scholar 

  11. Straight, A. F., Sedat, J. W. & Murray, A. W. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J. Cell. Biol. 143 , 687–694 (1998).

    Article  CAS  Google Scholar 

  12. Sawin, K. E., Leguellec, K., Phillipe, M. & Mitchison, T. J. Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359, 540–543 ( 1992).

    Article  CAS  Google Scholar 

  13. Heck, M. M. et al. The kinesin-like protein KLP61F is essential for mitosis in Drosophila. J. Cell Biol. 123, 665– 679 (1993).

    Article  CAS  Google Scholar 

  14. Cole, D. G., Saxton, W. M., Sheehan, K. B. & Scholey, J. M. A ‘slow’, homotetrameric, plus-end directed kinesin purified from Drosophila embryos. J. Biol. Chem. 269, 22913–22916 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kashina, A.S. et al. A bipolar kinesin. Nature 379, 270–272 (1996).

    Article  CAS  Google Scholar 

  16. Kashina, A. S., Scholey, J. M., Leszyk, J. D. & Saxton, W. M. An essential bipolar mitotic motor. Nature 384, 225 (1996).

    Article  CAS  Google Scholar 

  17. Sharp, D.J. et al. The bipolar kinesin, KLP61F, crosslinks microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles . J. Cell. Biol. 144, 125– 138 (1999).

    Article  CAS  Google Scholar 

  18. Blangy, A. et al. Phosphorylation by p34(Cdc2) regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159– 1169 (1995).

    Article  CAS  Google Scholar 

  19. McDonald, H. B., Stewart, R. J. & Goldstein, L. S. B. The kinesin-like Ncd protein of Drosophila is a minus-end directed microtubule motor. Cell 63, 1159–1165 (1990).

    Article  CAS  Google Scholar 

  20. Walker, R. A., Salmon, E. D. & Endow, S. A. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347, 780–782 (1990).

    Article  CAS  Google Scholar 

  21. Matthies, H. J., McDonald, H. B., Goldstein, L. S. B. & Theurkauf, W. E. Anastral meiotic spindle morphogenesis: role of the Non-claret Disjunctional kinesin-like protein. J.Cell Biol. 134, 455–464 (1996).

    Article  CAS  Google Scholar 

  22. Endow, S. A. & Komma, D. J. Centrosome and spindle function of the Drosophila Ncd microtubule motor visualized in live embryos using Ncd-GFP fusion proteins. J. Cell Sci. 109, 2429–2442 (1996).

    CAS  PubMed  Google Scholar 

  23. O’Connell, M. J., Meluh, P. B., Rose, M. D. & Morris, M. R. Suppression of the bimC mitotic spindle defect by deletion of klpA, a kar3 related kinesin like protein in Aspergillus nidulans. J. Cell Biol. 120, 153–162 (1993).

    Article  Google Scholar 

  24. Pidoux, A. L., LeDizet, M. & Cande, W. Z. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function. Mol. Biol. Cell. 7, 1639–1655 (1996).

    Article  CAS  Google Scholar 

  25. Saunders, W., Lengyel, V. & Hoyt, M. A. Mitotic spindle function in Saccharomyces cerevisiae requires a balance between different types of kinesin-related motors . Mol. Biol. Cell. 8, 1025– 1033 (1997).

    Article  CAS  Google Scholar 

  26. Su, T. T. et al. Exit from mitosis in Drosophila syncytial embryos requires proteolysis and cyclin degradation and is associated with localized dephosphorylation . Genes Dev. 12, 1495–1503 (1998).

    Article  CAS  Google Scholar 

  27. Lewis, E. B. & Gancarella, W. Claret and non-disjunction. Genetics 37, 600–601 ( 1952).

    Google Scholar 

  28. Vaisberg, E. A., Koonce, M. P. & McIntosh, J. R. Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J. Cell Biol. 123, 849 –858 (1993).

    Article  CAS  Google Scholar 

  29. Saunders, W. S., Koshland, D., Eshel, D., Gibbons, I. R. & Hoyt, M. A. Saccharomyces cerevisiae kinesin- and dynein-related proteins required for anaphase chromosome segregation. J. Cell Biol. 128, 617–624 ( 1995).

    Article  CAS  Google Scholar 

  30. McIntosh, J. R., Hepler, P. K. & Van Wie, D. G. Model for mitosis. Nature 224, 659–663 (1969).

    Article  Google Scholar 

  31. Francis-Lang, H., Minden, J., Sullivan, W. & Oegema, K. Live confocal analysis with fluorescently labeled proteins. Methods Mol. Biol. 122, 223–237 (1995).

    Google Scholar 

  32. Kellogg, D. R. et al. Studies on the centrosome and cytoplasmic organization in the early Drosophila embryo. Cold Spring Harb. Symp. Quant. Biol. 56, 649–662 ( 1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (to J.M.S. and W.S.) and NIH postdoctoral fellowships (to D.J.S. and J.C.S.). We thank S. Hawley and members of his laboratory for help with this study and for providing the Cand fly stocks; R. Saint for providing the histone–GFP line; G. Rogers for Fig. 4 and his intellectual contribution to this work; and the other members of the Scholey and Sullivan laboratories for assistance. The anti-KLP61F antibody used here was made in collaboration with T. Mitchison and we thank him for his continuing interest and for discussions about mitosis.

Correspondence and requests for materials should be addressed to J.M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Scholey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharp, D., Yu, K., Sisson, J. et al. Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nat Cell Biol 1, 51–54 (1999). https://doi.org/10.1038/9025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing