Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Genetically Engineered Fertile Indica-Rice Recovered from Protoplasts

Abstract

We have established an efficient protocol for plant regeneration from haploid Indica-type rice protoplasts. Incubation of these protoplasts with the selectable hygromycin phosphotransferase (hph) gene expressed under control of the 35S promoter of cauliflower mosaic virus (CaMV) and polyethyleneglycol (PEG), and subsequent culture in the presence of hygromycin B, led to the recovery of numerous resistant clones from which 77 plants were regenerated. Data from Southern analysis and enzyme assays proved that the transgene was stably integrated into the host genome and expressed, and that it was inherited in offspring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Khush, G.S. 1984. IRRI breeding program and its worldwide impact on increasing rice production, p. 61–94 In: Gene Manipulation in Plant Improvement. Gustafson, J.P. (Ed.). Plenum Press, NY.

    Chapter  Google Scholar 

  2. Swaminathan, M.S. 1982. Biotechnology research and third world agriculture. Science 218: 967–972.

    Article  CAS  Google Scholar 

  3. Potrykus, I. 1990. Gene transfer to cereals: An assessment. Bio/Technology 8: 535–542.

    CAS  Google Scholar 

  4. Paszkowski, J., Shillito, R.D., Saul, M.W., Mandak, V., Hohn, T., Hohn, B. and Potrykus, I. 1984. Direct gene transfer to plants. EMBO J 3: 2717–2722.

    Article  CAS  Google Scholar 

  5. Potrykus, I. 1990. Gene transfer to plants: assessment and perspectives. Physiol. Plant. 73(1), In press.

    Google Scholar 

  6. Vasil, I.K. 1988. Progress in the regeneration and genetic manipulation of cereal crops. Bio/Technology 6: 397–402.

    Google Scholar 

  7. Datta, S.K., Datta, K. and Potrykus, I. 1990. Embryogenesis and plant regeneration from microspores of both “Indica” and “Japonica” rice (Oryza sativa). Plant Sci. 67: 83–88.

    Article  Google Scholar 

  8. Datta, S.K., Datta, K. and Potrykus, I. 1990. Fertile Indica rice plants from protoplasts of microspore derived suspension culture. Plant Cell Rep. In press.

    Google Scholar 

  9. Chu, C.C., Wang, C.C., Sun, S.S., Hsu, C., Yin, K.C., Chu, C.Y. and Bi, F.Y. 1975. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 18: 659–668.

    Google Scholar 

  10. Murashige, T. and Skoog, F. 1962. A revised medium for a rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 15: 473–479.

    Article  CAS  Google Scholar 

  11. Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.

    Article  CAS  Google Scholar 

  12. Toriyama, K., Arimoto, Y., Uchimiya, H. and Hinata, K. 1988. Transgenic rice plants after direct gene transfer into protoplasts. Bio/Technology 6: 1072–1074.

    CAS  Google Scholar 

  13. Zhang, W. and Wu, R. 1988. Efficient regeneration of transgenic rice plants from rice protoplasts and correctly regulated expression of foreign genes in the plants. Theor. Appl. Genet. 76: 835–840.

    Article  CAS  Google Scholar 

  14. Zhang, H.M., Yang, H., Rech, E.L., Golds, T.J., Davis, A.S., Mulligan, B.J., Cocking, E.C. and Davey, M.R. 1988. Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts. Plant Cell Rep. 7: 379–384.

    CAS  PubMed  Google Scholar 

  15. Shimamoto, K., Terada, R., Izawa, T. and Fujimoto, H. 1989. Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338: 274–277.

    Article  CAS  Google Scholar 

  16. Fromm, M.E., Taylor, L.P. and Walbot, W. 1986. Stable transformation of maize after gene transfer by electroporation. Nature 319: 791–793.

    Article  CAS  Google Scholar 

  17. Rhodes, C.A., Pierce, D.A., Mettler, D.M., Mascarenhas, D. and Detmer, J.J. 1988. Genetically transformed maize plants from protoplasts. Science 240: 204–207.

    Article  CAS  Google Scholar 

  18. Lee, L., Schroll, R.E., Grimes, H.D. and Hodges, T.K. 1989. Plant regeneration from indica rice (Oryza sativa) protoplasts. Planta 178: 325–333.

    Article  CAS  Google Scholar 

  19. Peterhans, A., Datta, S.K., Datta, K., Godali, G.J., Potrykus, I. and Paszkowski, E. 1990. Recognition efficiency of Dicotyledoneae specific promoter and RNA processing signals in rice. Mol. Gen. Genet. In press.

    Google Scholar 

  20. Potrykus, I., Paskowski, J., Saul, M.W., Petruska, J. and Shillito, R.D. 1985. Molecular and general genetics of a hybrid foreign gene introduced into tobacco by direct gene transfer. Mol. Gen. Genet. 199: 167–177.

    Google Scholar 

  21. Blochinger, K. and Diggelmann, H. 1984. Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eucaryotic cells. Mol. Cell. Biol. 4: 2929–2931.

    Article  Google Scholar 

  22. Schocher, R.J., Shillito, R.D., Saul, M.W., Paskowski, J. and Potrykus, I. 1986. Co-transformation of unlinked foreign genes into plants by direct gene transfer. Bio/Technology 4: 1093–1096.

    CAS  Google Scholar 

  23. Delanny, X., LaVallee, B.J., Proksch, R.K., Fuchs, R.L., Sims, S.R., Greenplate, J.T., Marrone, P.G., Dodson, R.B., Augustine, J.J., Layton, J.G. and Fischhoff, D.A. 1989. Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect control protein. Bio/Technology 7: 1265–1269.

    Google Scholar 

  24. Gronenborn, B. 1989. The molecular biology of cauliflower mosaic virus and its application as plant gene vector, p. 1–29. In: Plant DNA Infectious Agents. Hohn T. H. and Schell J. (Eds.). Springer-Verlag, Wien, NY.

    Google Scholar 

  25. Pietrzak, M., Shillito, R.D., Hohn, T. and Potrykus, I. 1986. Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucleic Acid Res. 14: 5857–5868.

    Article  CAS  Google Scholar 

  26. Negrutiu, I., Shillito, R., Potrykus, I., Biasini, G. and Sala, F. 1987. Hybrid genes in the analysis of transformation condition. Plant Mol. Biol. 8: 363–373.

    Article  CAS  Google Scholar 

  27. Shillito, R.D., Paskowski, J. and Potrykus, I. 1983. Agarose plating and a bead type culture technique enable and stimulate development of protoplasts-derived colonies in a number of plant species. Plant Cell Rep. 2: 244–247.

    Article  CAS  Google Scholar 

  28. Murray, H.G. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res. 8: 4321–4326.

    Article  CAS  Google Scholar 

  29. Feinberg, A.P. and Vogelstein, B. 1983. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6–13.

    Article  CAS  Google Scholar 

  30. Cabanes-Bastos, E., Day, A.G. and Lichtenstein, C.P. 1989. A sensitive and simple assay for neomycin-phosphotransferase II activity in transgenic tissue. Gene 77: 169–177.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, S., Peterhans, A., Datta, K. et al. Genetically Engineered Fertile Indica-Rice Recovered from Protoplasts. Nat Biotechnol 8, 736–740 (1990). https://doi.org/10.1038/nbt0890-736

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0890-736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing