Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mapping and Sequencing the Human Genome: How to Proceed

Abstract

The proposal to map and sequence the genome has engendered a controversy among biologists—a controversy that involves personalities and politics, as well as scientific judgments of the probable course of future development in the technologies for mapping and sequencing. Some of the key issues are: • Is sequencing the human genome an intellectually appropriate project for biologists? • Is sequencing the human genome feasible? How long will it take? What will it cost? What is the accuracy of the sequencing procedures, and how will these affect the usefulness of the information? • What benefits might arise from this project? Do they justify the cost? Are there alternative methods for achieving the same benefits? • Will this project compete with other areas of biology for funding and intellectual resources? If so, is it worth it? • This project will eventually require large and coordinated efforts. What implications will this “big science” have for modern biology? In this paper, we will discuss the technologies used in mapping and sequencing, discuss the above issues in that context, and present our proposed approach to mapping and sequencing the human genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Royal, A., Garapin, A., Cami, B., Perrin, F., Mandel, J.L., LeMeur, M., Brégégegre, F., Gannon, F., LePennec, J.P., Chambon, P., and Kourilsky, P. 1979. The ovalbumin gene region: Common features in the organisation of three genes expressed in chicken oviduct under hormonal control. Nature 279: 125–132.

    Article  CAS  PubMed  Google Scholar 

  2. Van Dilla, M.A., Deaven, L.L., Albright, K.L., Allen, N.A., Aubuchon, M.R., Bartholdi, M.F., Brown, N.C., Campbell, E.W., Carrano, A.V., Clark, L.M., Cram, L.S., Crawford, B.D., Fuscoe, J.C., Gray, J.W., Hildebrand, C.E., Jackson, P.J., Jett, J.H., Longmire, J.L., Lozes, C.R., Luedemann, M.L., Martin, J.C., McNinch, J.S., Meincke, L.J., Mendelsohn, M.L., Meyne, J., Moyzis, R.K., Munk, A.C., Perlman, J., Peters, D.C., Silva, A.J., and Trask, B.J. 1986. Human chromosome-specific DNA libraries: Construction and availability. Bio/Technology 4: 537–552.

    CAS  Google Scholar 

  3. Botstein, D., White, R.L., Skolnick, and Davis, R.W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gusella, J.F., Wexler, N.S., Conneally, P.M., Naylor, S.L., Anderson, M.A., Tanzi, R.E., Watkins, P.C., Ottina, K., Wallace, M.R., Sakaguchi, A.Y., Young, A.B., Shoulson, I., Bonilla, E., and Martin, J.B. 1983. A polymorphic DNA marker genetically linked to Huntington's disease. Nature 306: 234–238.

    Article  CAS  PubMed  Google Scholar 

  5. Estivill, X., Farrall, M., Scambler, P.J., Bell, G.M., Hawley, K.M.F., Lench, N.J., Bates, G.P., Kruyer, H.C., Frederick, P.A., Stanier, P., Watson, E.K., Williamson, R., and Wainwright, B.J. 1987. A candidate for the cystic fibrosis locus isolated by selection for methylation-free islands. Nature 326: 840–845.

    Article  CAS  PubMed  Google Scholar 

  6. Kang, J., Lemaire, H.-G., Unterbeck, A., Salbaum, J.M., Masters, C.L., Grzeschik, K.-H., Multhaup, G., Beyreuther, K., and Müller-Hill, B. 1987. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736.

    Article  CAS  PubMed  Google Scholar 

  7. Egeland, J.A., Gerhard, D.S., Pauls, D.L., Sussex, J.N., Kidd, K.K., Allen, C.R., Hostetter, A.M., and Housman, D.E. 1987. Bipolar affeclive disorders linked to DNA markers on chromosome 11. Nature 325: 783–787.

    Article  CAS  PubMed  Google Scholar 

  8. Hodgkinson, S., Sherrington, R., Gurling, H., Marchbanks, R., Reeders, S., Mallet, J., McInnis, M., Petursson, H., and Brynjolfsson, J. 1987. Molecular genetic evidence for heterogeneily in manic depression. Nature 325: 805–806.

    Article  CAS  PubMed  Google Scholar 

  9. Chu, B.C. and Orgel, L.E. 1985. Nonenzymatic sequence-specific cleavage of single-stranded DNA. Proc. Natl. Acad. Sci. USA 82: 963–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dreyer, G.B. and Dervan, P.B. 1985. Sequence-specific cleavage of single-stranded DNA: Oligodeoxynucleotide-EDTA Fe(II). Proc. Natl. Acad. Sci. USA 82: 968–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwartz, D.C. and Cantor, C.R. 1984. Separation of yeast chromosome-sized DNAs by pulsed-field gradient gel electrophoresis. Cell 37: 67–75.

    Article  CAS  PubMed  Google Scholar 

  12. Carle, G.F., Frank, M., and Olson, M.V. 1986. Electrophorelic separations of large DNA molecules by periodic inversion of the electric field. Science 232: 65–68.

    Article  CAS  PubMed  Google Scholar 

  13. Chu, G., Vollralh, D., and Davis, R.W. 1986. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234: 1582–1585.

    Article  CAS  PubMed  Google Scholar 

  14. Smilh, A.J.H. 1980. DNA sequence analysis by primed synthesis. Meth. In Enzymol. 65: 560–580.

    Article  Google Scholar 

  15. Maxam, A.M. and Gilbert, W. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Meth. in Enzymol. 65: 499–560.

    Article  CAS  Google Scholar 

  16. Smith, L.M., Fung, S., Hunkapiller, M.W., Hunkapiller, T., and Hood, L.E. 1985. The synthesis of oligonucleotides containing an aliphatic amino group at the 5′ terminus: Synthesis of fluorescent DNA primers for use in DNA sequence analysis. Nucl. Acids. Res. 13: 2399–2412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith, L.M., Sanders, J.Z., Kaiser, R.J., Hughes, P., Dodd, C., Connell, C.R., Heiner, C., Kent, S.B.H., and Hood, L.E. 1986. Fluorescence deleclion in automated DNA sequence analysis. Nature 321: 674–679.

    Article  CAS  PubMed  Google Scholar 

  18. Connell, C., Fung, S., Heiner, C., Bridgham, J., Chakerian, V., Heron, E., Jones, B., Menchen, S., Mordan, W., Raff, M., Recknor, M., Smith, L., Springer, J., Woo, S., and Hunkapiller, M. 1987. Aulomaled DNA sequence analysis. Biotechniques 5: 314–321.

    Google Scholar 

  19. Wada, A. 1987. Aulomaled high-speed DNA sequencing. Nature 325: 771–772.

    Article  CAS  PubMed  Google Scholar 

  20. Church, G.M. and Gilbert, W. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991–1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Proceedings of January 1987 Sanla Fe Workshop on ihe Human Genome, Los Alamos Nalional Laboratory.

  22. Hunkapiller, M., Kent, S., Carulhers, M., Dreyer, W., Firca, J., Griffin, C., Horvalh, S., Hunkapiller, T., Tempst, P., and Hood, L. 1984. A microchemical facilily for ihe analysis and synlhesis of genes and prqleins. Nature 310: 105–111.

    Article  CAS  PubMed  Google Scholar 

  23. Steinmetz, M. and Hood, L. 1983. Genes of the major histocompalibility complex in mouse and man. Science 222: 727–733.

    Article  CAS  PubMed  Google Scholar 

  24. Tiwari, J. and Terasaki, P. 1985. HLA and Disease Association. Springer-Verlag, New York.

    Book  Google Scholar 

  25. Kronenberg, M., Siu, G., Hood, L.E., and Shastri, N. 1986. The molecular genelics of ihe T-cell anligen receptor and T-cell anligen recognition. Ann. Rev. Immunol. 4: 529–591.

    Article  CAS  Google Scholar 

  26. Garrels, J.I., Farrar, J.T., Burwell, C.B., IV. 1984. The QUEST system for computer-analyzed two-dimensional electrophoresis of proteins, p. 37–91. In: Two-Dimensional Gel Eleclrophoresis of Proteins. Academic Press.

    Chapter  Google Scholar 

  27. Acbersold, R.H., Leavitt, J., Saavedra, R. A., Hood, L.E., and Kent, S.B.H. 1987. Internal amino acid sequence analysis of proleins separaled by one- or two-dimensional gel eleclrophoresis by in situ protease digeslion on nitrocellulose. Proc. Natl. Acad. Sci. USA, submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, L., Hood, L. Mapping and Sequencing the Human Genome: How to Proceed. Nat Biotechnol 5, 933–939 (1987). https://doi.org/10.1038/nbt0987-933

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0987-933

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing