Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Development of a Vibrio Bioluminescence Gene–Set to Monitor Phytopathogenic Bacteria During the Ongoing Disease Process in a Non–Disruptive Manner

Abstract

Bioluminescence (lux) genes from Vibrio fischeri were cloned as a promoter–less gene set into the broad–host–range vector, pUCD4, resulting in the recombinant plasmid pUCD607 that was mobilized into a variety of plant pathogenic and symbiotic bacteria. All bacteria harboring the lux genes under the control of a constitutive promoter in pUCD607 constitutively bioluminesced. Virulence remained unaffected in pathogens carrying pUCD607, and bacterial invasion in host plant tissues was visually followed. The light generated is quantifiable and directly reflects the growth of the pathogen population in host tissue even before the onset of visual symptoms. pUCD607 is relatively stable in bacteria in planta in the absence of selective pressure. Bioluminescence can thus be successfully used to tag genetically engineered bacteria for subsequent monitoring during interactions with plants and in determining their fate in the environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, M.E. 1982. Nitrogen fixation by free-living bacteria associated with plants—fact or fiction? In: Bacteria and plants. Rhodes-Roberts, M. and Skinner, F. A. (eds.) Academic Press, N.Y.

    Google Scholar 

  2. Preece, T.F. and Dickinson, C.H. 1971. Ecology of leaf surface micro-organisms. Academic Press, N.Y.

    Google Scholar 

  3. Vidaver, A.K. 1982. in Phytopathogenic Prokaryotes p. 387–414, Vol. 2. Mount, M. S., Lacy, G. H. (eds.) Academic Press, N.Y.

    Book  Google Scholar 

  4. Misaghi, I.J. 1982. Physiology and Biochemistry of Plant-Pathogen Interactions, Plenum Press, N.Y.

    Book  Google Scholar 

  5. Andrew, J.H. and Kenerley, C.M. 1978. The effects of a pesticide program on non-target epiphytic microbial populations of apple leaves. Can. J. Microbiol. 24:1058–1072.

    Article  Google Scholar 

  6. Sigee, D.C., Smith, V.A. and Hindley, J. 1982. Passage of bacterial DNA into host cells during in vitro transformation of Nicotiana tabacum by Agrobacterium tumefaciens. Microbios 34:113–132.

    CAS  PubMed  Google Scholar 

  7. Engebrecht, J., Nealson, K. and Silverman, M. 1983. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781.

    Article  CAS  PubMed  Google Scholar 

  8. Engebrecht, J., Simon, M. and Silverman, M. 1985. Measuring gene expression with light. Science 227:1345–1347.

    Article  CAS  PubMed  Google Scholar 

  9. Preece, T.F. 1982. The progression of bacterial disease within plants. In: Bacteria and Plants. Rhodes-Roberts and Skinner, F. A. (eds.) Academic Press, N.Y.

    Google Scholar 

  10. Booth, C.K. and Nealson, K.H. 1975. Light emission by luminous bacteria in the open ocean. Biophys. J. 15:56a.

    Google Scholar 

  11. Miller, J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  12. Kado, C.I., Heskett, M.G., and Langley, R.A. 1972. Studies of Agrobacterium tumefaciens: Characterization of strains 1D135 and B6 and analysis of the bacterial chromosome, transfer RNA and ribosomes for tumor inducing ability. Physiol. Plant Pathol. 2:47–57.

    Article  CAS  Google Scholar 

  13. Lundquist, R.C., Close, T.J. and Kado C.I. 1984. Genetic complementation of Agrobacterium tumefaciens Ti plasmid mutants in the virulence region. Mol. Gen. Genet. 193:1–7.

    Article  CAS  PubMed  Google Scholar 

  14. Staskawicz, B.J., Dahlbeck, D. and Keen N.T. 1984. Cloned avirulence gene of Pseudononas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. Proc. Natl. Acad. Sci. USA 81:6024–6028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boyer, H.W. and Roulland-Dussoix, D. 1969. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41:459–472.

    Article  CAS  PubMed  Google Scholar 

  16. Close, T.J., Zaitlin, D. and Kado, C.I. 1984. Design and development of amplifiable broad-host-range cloning vectors: analysis of the vir region of Agrobacterium tumefaciens plasmid pTiC58. Plasmid 12:111–118.

    Article  CAS  PubMed  Google Scholar 

  17. Figurski, D.H. and Helinski, D.R. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76:1648–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ark, P.A. and Schroth, M.N. 1958. Use of slices of carrot and other fleshy roots to detect crown fall bacteria in soil. Plant Dis. Reptr. 42:1279–1281.

    Google Scholar 

  19. Sutton, J.C. and Williams, P.H. 1970. Relation of xylem plugging to black rot lesion development in cabbage. Can. J. Bot. 48:391–401.

    Article  Google Scholar 

  20. Kelman, A. and Dickey, R.S. 1980. Laboratory Guide for Identification of Plant Pathogenic Bacteria, p. 31–34. Schaad, N. W. (ed.). American Phytopathological Society, St. Paul, Minnesota.

    Google Scholar 

  21. Close, T.J. and Rodriguez, R.L. 1983. Construction and characterization of the chloramphenicol-resistance gene cartridge: A new approach to the transcriptional mapping of extrachromosomal elements. Gene 20:305–316.

    Article  Google Scholar 

  22. Tait, R.C., Lundquist, R.C. and Kado, C.I. 1982. Genetic map of the crown fall suppressive IncW plasmid pSa. Mol. Gen. Genet. 186:10–15.

    Article  CAS  PubMed  Google Scholar 

  23. Bolivar, F., Rodriguez, R., Betlach, M.C. and Boyer, H.W. 1977. Construction and characterization of new cloning vehicles I. Ampicillin-resistant derivatives of the plasmid pMB9. Gene 2:75–93.

    Article  CAS  PubMed  Google Scholar 

  24. Kado, C.I. and Liu, S.-T. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145:1365–1373.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tait, R.C., Rodriguez, R.L. and West, R.W. 1980. The rapid purification of T4 DNA ligase from a T4lig lysogen. J. Biol. Chem. 255:813–815.

    CAS  PubMed  Google Scholar 

  26. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  27. Lasky, R.A. 1980. The use of intensifying screens or organic scintillators for visualizing radioactive molecules resolved by gel electrophoresis, p. xxx–xxx. In: Methods in Enzymology, Vol. 65. Grossman, L. and Moldave, K. (eds.). Academic Press N.Y.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, J., Kado, C. Development of a Vibrio Bioluminescence Gene–Set to Monitor Phytopathogenic Bacteria During the Ongoing Disease Process in a Non–Disruptive Manner. Nat Biotechnol 4, 560–564 (1986). https://doi.org/10.1038/nbt0686-560

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0686-560

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing