Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Using GlycoDelete to produce proteins lacking plant-specific N-glycan modification in seeds

An Author Correction to this article was published on 05 March 2020

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: N-glycan structures and assembly pathways in wild-type and glycoengineered plants.
Figure 2: Analysis of the WT, cgl and GlycoDelete ASP1.

References

  1. Chung, C.H. et al. N. Engl. J. Med. 358, 1109–1117 (2008).

    Article  CAS  Google Scholar 

  2. Saint-Jore-Dupas, C., Faye, L. & Gomord, V. Trends Biotechnol. 25, 317–323 (2007).

    Article  CAS  Google Scholar 

  3. Meuris, L. et al. Nat. Biotechnol. 32, 485–489 (2014).

    Article  CAS  Google Scholar 

  4. Kurosaka, A. et al. J. Biol. Chem. 266, 4168–4172 (1991).

    CAS  PubMed  Google Scholar 

  5. Bardor, M. et al. Glycobiology 13, 427–434 (2003).

    Article  CAS  Google Scholar 

  6. Jin, C. et al. Glycobiology 18, 235–241 (2008).

    Article  CAS  Google Scholar 

  7. van Ree, R. et al. J. Biol. Chem. 275, 11451–11458 (2000).

    Article  CAS  Google Scholar 

  8. U.S. Food and Drug Administration. http://www.fda.gov/Safety/MedWatch/SafetyInformation/ucm413395.htm (2014).

  9. Koprivova, A. et al. Plant Biotechnol. J. 2, 517–523 (2004).

    Article  CAS  Google Scholar 

  10. Cox, K.M. et al. Nat. Biotechnol. 24, 1591–1597 (2006).

    Article  CAS  Google Scholar 

  11. Sourrouille, C. et al. Plant Biotechnol. J. 6, 702–721 (2008).

    Article  CAS  Google Scholar 

  12. Kim, H.-S., Jeon, J.-H., Lee, K.J. & Ko, K. BioMed. Res. Int. 2014, 249519 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. Palacpac, N.Q. et al. Proc. Natl. Acad. Sci. USA 96, 4692–4697 (1999).

    Article  CAS  Google Scholar 

  14. Strasser, R., Altmann, F. & Steinkellner, H. Curr. Opin. Biotechnol. 30, 95–100 (2014).

    Article  CAS  Google Scholar 

  15. Decker, E.L., Parsons, J. & Reski, R. Front. Plant Sci. 5, 346 (2014).

    Article  Google Scholar 

  16. Castilho, A. et al. Plant Physiol. 147, 331–339 (2008).

    Article  CAS  Google Scholar 

  17. Stals, I. et al. FEMS Microbiol. Lett. 303, 9–17 (2010).

    Article  CAS  Google Scholar 

  18. von Schaewen, A., Sturm, A., O'Neill, J. & Chrispeels, M.J. Plant Physiol. 102, 1109–1118 (1993).

    Article  CAS  Google Scholar 

  19. De Jaeger, G. et al. Nat. Biotechnol. 20, 1265–1268 (2002).

    Article  CAS  Google Scholar 

  20. Bosch, D., Castilho, A., Loos, A., Schots, A. & Steinkellner, H. Curr. Pharm. Des. 19, 5503–5512 (2013).

    Article  CAS  Google Scholar 

  21. Geldhof, P. et al. Mol. Biochem. Parasitol. 128, 111–114 (2003).

    Article  CAS  Google Scholar 

  22. Breidenbach, M.A. et al. Proc. Natl. Acad. Sci. USA 107, 3988–3993 (2010).

    Article  CAS  Google Scholar 

  23. Nykiforuk, C.L. & Boothe, J.G. Ther. Proteins 899, 239–264 (2012).

    Article  CAS  Google Scholar 

  24. Jacobs, T.B., LaFayette, P.R., Schmitz, R.J. & Parrott, W.A. BMC Biotechnol. 15, 16 (2015).

    Article  Google Scholar 

  25. Kajiura, H. et al. Glycobiology 20, 235–247 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Van Lerberge for the cultivation and propagation of plants, J. Nolf for the purification of the ASP1 proteins and A. Van Hecke for assistance during glycan analysis. The Department of Plant Systems Biology, VIB, Ghent, Belgium. GBP-Fc was kindly provided by T. De Meyer. R.P. and F.S. are supported by predoctoral fellowships from the Agency for Innovation by Science and Technology (IWT) Flanders (Strategic Basic Research fellowship nos. 093450 and 101456). This research was supported by VIB, by Ghent University Industrial Research Fund (UGent-IOF) Advanced Grant no. 041 (N.C.), by FWO research projects Grant no. G.0.541.08.N.10 (N.C.) and G0C9714N (A.D.), and by the European Cooperation in Science and Technology (COST) action FA0804 for conference reimbursements. We also thank the European Cooperation in Science and Technology (COST) action FA0804 for conference reimbursements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ann Depicker or Nico Callewaert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–3 and Supplementary Methods (PDF 347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piron, R., Santens, F., De Paepe, A. et al. Using GlycoDelete to produce proteins lacking plant-specific N-glycan modification in seeds. Nat Biotechnol 33, 1135–1137 (2015). https://doi.org/10.1038/nbt.3359

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3359

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing