Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification

Abstract

Little is known about the functional domain architecture of long noncoding RNAs (lncRNAs) because of a relative paucity of suitable methods to analyze RNA function at a domain level. Here we describe domain-specific chromatin isolation by RNA purification (dChIRP), a scalable technique to dissect pairwise RNA-RNA, RNA-protein and RNA-chromatin interactions at the level of individual RNA domains in living cells. dChIRP of roX1, a lncRNA essential for Drosophila melanogaster X-chromosome dosage compensation, reveals a 'three-fingered hand' ribonucleoprotein topology. Each RNA finger binds chromatin and the male-specific lethal (MSL) protein complex and can individually rescue male lethality in roX-null flies, thus defining a minimal RNA domain for chromosome-wide dosage compensation. dChIRP improves the RNA genomic localization signal by >20-fold relative to previous techniques, and these binding sites are correlated with chromosome conformation data, indicating that most roX-bound loci cluster in a nuclear territory. These results suggest dChIRP can reveal lncRNA architecture and function with high precision and sensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: dChIRP uses antisense oligonucleotides to purify specific RNA domains and associated RNAs, proteins and chromatin.
Figure 2: dChIRP RNA co-recovery reveals roX1's topological architecture.
Figure 3: roX1 D domains interact with the MSL complex and chromatin on the X chromosome.
Figure 4: dChIRP boosts genomic occupancy signal relative to traditional ChIRP-seq.
Figure 5: CESs cluster together in a dosage-compensation territory of the nucleus.
Figure 6: roX1's D domains are independent, functional RNA subunits.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Batista, P.J. & Chang, H.Y. Long noncoding RNAs: cellular address codes in development and disease. Cell 152, 1298–1307 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee, J.T. & Bartolomei, M.S. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152, 1308–1323 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mercer, T.R., Dinger, M.E. & Mattick, J.S. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10, 155–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Guttman, M. & Rinn, J.L. Modular regulatory principles of large non-coding RNAs. Nature 482, 339–346 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ule, J., Jensen, K., Mele, A. & Darnell, R.B. CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37, 376–386 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Helwak, A., Kudla, G., Dudnakova, T. & Tollervey, D. Mapping the human miRNA interactome by CLASH reveals frequent non-canonical binding. Cell 153, 654–665 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chu, C., Qu, K., Zhong, F.L., Artandi, S.E. & Chang, H.Y. Genomic maps of long noncoding RNA occupancy reveals principles of RNA-chromatin interactions. Mol. Cell 44, 667–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Simon, M.D. et al. The genomic binding sites of a noncoding RNA. Proc. Natl. Acad. Sci. USA 108, 20497–20502 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Engreitz, J.M. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341, 1237973 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang, L. et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500, 598–602 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rossetto, C.C., Tarrant-Elorza, M., Verma, S., Purushothaman, P. & Pari, G.S. Regulation of viral and cellular gene expression by Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA. J. Virol. 87, 5540–5553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Colak, D. et al. Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome. Science 343, 1002–1005 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Conrad, T. & Akhtar, A. Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat. Rev. Genet. 13, 123–134 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Straub, T., Gilfillan, G., Maier, V.K. & Becker, P.B. The Drosophila MSL complex activates the transcription of target genes. Genes Dev. 19, 2284–2288 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alekseyenko, A.A. et al. A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 134, 599–609 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ilik, I.A. et al. Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol. Cell 51, 156–173 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kind, J. et al. Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila. Cell 133, 813–828 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Soruco, M.M.L. et al. The CLAMP protein links the MSL complex to the X chromosome during Drosophila dosage compensation. Genes Dev. 27, 1551–1556 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meller, V.H. & Rattner, B.P. The roX genes encode redundant Male-Specific-Lethal transcripts required for targeting of the MSL complex. EMBO J. 21, 1084–1091 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park, S.W. et al. An evolutionarily conserved domain of roX2 RNA is sufficient for induction of H4-Lys19 acetylation on the Drosophila X chromosome. Genetics 177, 1429–1437 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stuckenholz, C., Meller, V.H. & Kuroda, M.I. Functional redundancy within roX1, a noncoding RNA involved in dosage compensation in Drosophila melanogaster. Genetics 164, 1003–1014 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kelley, R.L., Lee, O.K. & Shim, Y.K. Transcription rate of noncoding roX1 RNA controls local spreading of the Drosophila MSL chromatin remodeling complex. Mech. Dev. 125, 1009–1019 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maenner, S., Müller, M., Fröhlich, J., Langer, D. & Becker, P.B. ATP-dependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins. Mol. Cell 51, 174–184 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Grimaud, C. & Becker, P.B. The dosage compensation complex shapes the conformation of the X chromosome in Drosophila. Genes Dev. 23, 2490–2495 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Simon, M.D. et al. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504, 465–469 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, K.C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lai, F. et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494, 497–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

  33. Chu, C., Quinn, J.J. & Chang, H.Y. Chromatin isolation by RNA purification (ChIRP). J. Vis. Exp. 61, e3912 (2012).

    Google Scholar 

  34. Gupta, R.A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rashid, N.U., Giresi, P.G., Ibrahim, J.G., Sun, W. & Lieb, J.D. ZINBA integrates local covariates with DNA-seq data to identify broad and narrow regions of enrichment, even within amplified genomic regions. Genome Biol. 12, R67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. Construction of transgenic Drosophila by using the site-specific integrase from phage PhiC31. Genetics 166, 1775–1782 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Chang and Akhtar labs, P. Sharp and X. Wu (Massachusetts Institute of Technology) for meaningful discussion and E. Larschan (Brown University) for CLAMP antibody. Supported by US National Institutes of Health R01-CA118750 and R01-ES023168 (H.Y.C.), Max Planck Society (A.A.) and Bio-X Fellowship (J.J.Q.). This work was supported by DFG-funded SFB992 and SFB746 and EU-funded EpiGeneSys awarded to A.A. H.Y.C. is an Early Career Scientist of the Howard Hughes Medical Institute; A.A. is part of the BIOSS excellence initiative.

Author information

Authors and Affiliations

Authors

Contributions

J.J.Q., I.A.I., P.G., C.C., H.Y.C. and A.A. designed the research. J.J.Q., I.A.I. and P.G. performed the research. K.Q. and J.J.Q. performed bioinformatic analyses. J.J.Q. and H.Y.C. wrote the manuscript. All authors discussed the results and reviewed the manuscript.

Corresponding author

Correspondence to Howard Y Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 2985 kb)

Supplementary Table 1

Supplementary Table 1 (XLSX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinn, J., Ilik, I., Qu, K. et al. Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat Biotechnol 32, 933–940 (2014). https://doi.org/10.1038/nbt.2943

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2943

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing