Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable protein degradation in bacteria

Abstract

Tunable control of protein degradation in bacteria would provide a powerful research tool. Here we use components of the Mesoplasma florum transfer-messenger RNA system to create a synthetic degradation system that provides both independent control of steady-state protein level and inducible degradation of targeted proteins in Escherichia coli. We demonstrate application of this system in synthetic circuit development and control of core bacterial processes and antibacterial targets, and we transfer the system to Lactococcus lactis to establish its broad functionality in bacteria. We create a 238-member library of tagged essential proteins in E. coli that can serve as both a research tool to study essential gene function and an applied system for antibiotic discovery. Our synthetic protein degradation system is modular, does not require disruption of host systems and can be transferred to diverse bacteria with minimal modification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein degradation tag characterization.
Figure 2: Pdt system characterization.
Figure 3: Protease-driven control of a synthetic toggle switch.
Figure 4: Tunable control of endogenous bacterial systems and antibacterial targets.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Article  CAS  Google Scholar 

  2. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

    Article  CAS  Google Scholar 

  3. Isaacs, F.J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22, 841–847 (2004).

    Article  CAS  Google Scholar 

  4. Lou, C., Stanton, B., Chen, Y.J., Munsky, B. & Voigt, C.A. Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat. Biotechnol. 30, 1137–1142 (2012).

    Article  CAS  Google Scholar 

  5. Janssen, B.D. & Hayes, C.S. The tmRNA ribosome-rescue system. Adv. Protein Chem. Struct. Biol. 86, 151–191 (2012).

    Article  CAS  Google Scholar 

  6. Neklesa, T.K. et al. Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat. Chem. Biol. 7, 538–543 (2011).

    Article  CAS  Google Scholar 

  7. Bonger, K.M., Chen, L.C., Liu, C.W. & Wandless, T.J. Small-molecule displacement of a cryptic degron causes conditional protein degradation. Nat. Chem. Biol. 7, 531–537 (2011).

    Article  CAS  Google Scholar 

  8. Davis, J.H., Baker, T.A. & Sauer, R.T. Small-molecule control of protein degradation using split adaptors. ACS Chem. Biol. 6, 1205–1213 (2011).

    Article  CAS  Google Scholar 

  9. Gur, E. & Sauer, R.T. Evolution of the ssrA degradation tag in Mycoplasma: specificity switch to a different protease. Proc. Natl. Acad. Sci. USA 105, 16113–16118 (2008).

    Article  CAS  Google Scholar 

  10. Ge, Z. & Karzai, A.W. Co-evolution of multipartite interactions between an extended tmRNA tag and a robust Lon protease in Mycoplasma. Mol. Microbiol. 74, 1083–1099 (2009).

    Article  CAS  Google Scholar 

  11. Mierau, I. & Kleerebezem, M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biotechnol. 68, 705–717 (2005).

    Article  CAS  Google Scholar 

  12. Gardner, T.S., Cantor, C.R. & Collins, J.J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  Google Scholar 

  13. Litcofsky, K.D., Afeyan, R.B., Krom, R.J., Khalil, A.S. & Collins, J.J. Iterative plug-and-play methodology for constructing and modifying synthetic gene networks. Nat. Methods 9, 1077–1080 (2012).

    Article  CAS  Google Scholar 

  14. Brown, E.D., Vivas, E.I., Walsh, C.T. & Kolter, R. MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J. Bacteriol. 177, 4194–4197 (1995).

    Article  CAS  Google Scholar 

  15. Adams, D.W. & Errington, J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat. Rev. Microbiol. 7, 642–653 (2009).

    Article  CAS  Google Scholar 

  16. Silversmith, R.E. Auxiliary phosphatases in two-component signal transduction. Curr. Opin. Microbiol. 13, 177–183 (2010).

    Article  CAS  Google Scholar 

  17. Roemer, T. & Boone, C. Systems-level antimicrobial drug and drug synergy discovery. Nat. Chem. Biol. 9, 222–231 (2013).

    Article  CAS  Google Scholar 

  18. DeVito, J.A. et al. An array of target-specific screening strains for antibacterial discovery. Nat. Biotechnol. 20, 478–483 (2002).

    Article  CAS  Google Scholar 

  19. Kim, D.H. et al. Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35, 4923–4928 (1996).

    Article  CAS  Google Scholar 

  20. Peterson, E.J., Janzen, W.P., Kireev, D. & Singleton, S.F. High-throughput screening for RecA inhibitors using a transcreener adenosine 5′-O-diphosphate assay. Assay Drug Dev. Technol. 10, 260–268 (2012).

    Article  CAS  Google Scholar 

  21. Wei, J.R. et al. Depletion of antibiotic targets has widely varying effects on growth. Proc. Natl. Acad. Sci. USA 108, 4176–4181 (2011).

    Article  CAS  Google Scholar 

  22. Zhu, W. et al. Antibacterial drug leads targeting isoprenoid biosynthesis. Proc. Natl. Acad. Sci. USA 110, 123–128 (2013).

    Article  CAS  Google Scholar 

  23. Cameron, D.E., Bashor, C.J. & Collins, J.J. A brief history of synthetic biology. Nat. Rev. Microbiol. 12, 381–390 (2014).

    Article  CAS  Google Scholar 

  24. Weber, W. & Fussenegger, M. Emerging biomedical applications of synthetic biology. Nat. Rev. Genet. 13, 21–35 (2012).

    Article  CAS  Google Scholar 

  25. Slusarczyk, A.L., Lin, A. & Weiss, R. Foundations for the design and implementation of synthetic genetic circuits. Nat. Rev. Genet. 13, 406–420 (2012).

    Article  CAS  Google Scholar 

  26. Callura, J.M., Cantor, C.R. & Collins, J.J. Genetic switchboard for synthetic biology applications. Proc. Natl. Acad. Sci. USA 109, 5850–5855 (2012).

    Article  CAS  Google Scholar 

  27. Huang, D., Holtz, W.J. & Maharbiz, M.M. A genetic bistable switch utilizing nonlinear protein degradation. J. Biol. Eng. 6, 9 (2012).

    Article  Google Scholar 

  28. Prindle, A. et al. Rapid and tunable post-translational coupling of genetic circuits. Nature 508, 387–391 (2014).

    Article  CAS  Google Scholar 

  29. Holtz, W.J. & Keasling, J.D. Engineering static and dynamic control of synthetic pathways. Cell 140, 19–23 (2010).

    Article  CAS  Google Scholar 

  30. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  31. Callura, J.M., Dwyer, D.J., Isaacs, F.J., Cantor, C.R. & Collins, J.J. Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proc. Natl. Acad. Sci. USA 107, 15898–15903 (2010).

    Article  CAS  Google Scholar 

  32. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  Google Scholar 

  33. Metcalf, W.W., Jiang, W. & Wanner, B.L. Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6Kγ origin plasmids at different copy numbers. Gene 138, 1–7 (1994).

    Article  CAS  Google Scholar 

  34. Salis, H.M., Mirsky, E.A. & Voigt, C.A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article  CAS  Google Scholar 

  35. Metcalf, W.W. et al. Conditionally replicative and conjugative plasmids carrying lacZα for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35, 1–13 (1996).

    Article  CAS  Google Scholar 

  36. Cormack, B.P., Valdivia, R.H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    Article  CAS  Google Scholar 

  37. Müller-Hill, B., Crapo, L. & Gilbert, W. Mutants that make more lac repressor. Proc. Natl. Acad. Sci. USA 59, 1259–1264 (1968).

    Article  Google Scholar 

  38. Dieye, Y., Usai, S., Clier, F., Gruss, A. & Piard, J.C. Design of a protein-targeting system for lactic acid bacteria. J. Bacteriol. 183, 4157–4166 (2001).

    Article  CAS  Google Scholar 

  39. van de Guchte, M., Kok, J. & Venema, G. Gene expression in Lactococcus lactis. FEMS Microbiol. Rev. 8, 73–92 (1992).

    CAS  PubMed  Google Scholar 

  40. Holo, H. & Nes, I.F. Transformation of Lactococcus by electroporation. Methods Mol. Biol. 47, 195–199 (1995).

    CAS  PubMed  Google Scholar 

  41. Zhou, J. & Rudd, K.E. EcoGene 3.0. Nucleic Acids Res. 41, D613–D624 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Bashor, M. Lobritz, M. Khalil and D. Dwyer for helpful discussions and critical reviews of the manuscript. This work was supported by funding from the Office of Naval Research (ONR) MURI Program, Defense Threat Reduction Agency grant HDTRA1-14-1-0006 and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

D.E.C. and J.J.C. conceived the study, analyzed data and wrote the paper. D.E.C. designed and performed the experiments.

Corresponding author

Correspondence to James J Collins.

Ethics declarations

Competing interests

D.E.C. and J.J.C. have submitted an international PCT patent application related to the work described here.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 2125 kb)

Supplementary Table 2

Essential protein degradation library (XLSX 89 kb)

Supplementary Table 3

Primers (XLSX 63 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cameron, D., Collins, J. Tunable protein degradation in bacteria. Nat Biotechnol 32, 1276–1281 (2014). https://doi.org/10.1038/nbt.3053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3053

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research