Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Combinatorial drug therapy for cancer in the post-genomic era

Abstract

Over the past decade, whole genome sequencing and other 'omics' technologies have defined pathogenic driver mutations to which tumor cells are addicted. Such addictions, synthetic lethalities and other tumor vulnerabilities have yielded novel targets for a new generation of cancer drugs to treat discrete, genetically defined patient subgroups. This personalized cancer medicine strategy could eventually replace the conventional one-size-fits-all cytotoxic chemotherapy approach. However, the extraordinary intratumor genetic heterogeneity in cancers revealed by deep sequencing explains why de novo and acquired resistance arise with molecularly targeted drugs and cytotoxic chemotherapy, limiting their utility. One solution to the enduring challenge of polygenic cancer drug resistance is rational combinatorial targeted therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: History of combination therapy for cancer.
Figure 2: Components of iterative computational approaches for identifying drug combinations.
Figure 3: Evolutionary model of clonal heterogeneity.
Figure 4: Network-based computational models.
Figure 5: The evolution of strategies and technologies for evaluating drug combinations.

Similar content being viewed by others

References

  1. Mukherjee, S. The Emperor of All Maladies (Scribner Book Company, 2011).

  2. DeVita, V.T. Jr., Young, R.C. & Canellos, G.P. Combination versus single agent chemotherapy: a review of the basis for selection of drug treatment of cancer. Cancer 35, 98–110 (1975).

    PubMed  Google Scholar 

  3. Chabner, B.A. & Roberts, T.G. Jr. Timeline: chemotherapy and the war on cancer. Nat. Rev. Cancer 5, 65–72 (2005).

    CAS  PubMed  Google Scholar 

  4. Espinal, M.A. et al. Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries. J. Am. Med. Assoc. 283, 2537–2545 (2000).

    CAS  Google Scholar 

  5. Hammer, S.M. et al. Treatment for adult HIV infection: 2006 recommendations of the International AIDS Society-USA panel. J. Am. Med. Assoc. 296, 827–843 (2006).

    CAS  Google Scholar 

  6. Brockman, R.W. Mechanisms of resistance to anticancer agents. Adv. Cancer Res. 7, 129–234 (1963).

    CAS  PubMed  Google Scholar 

  7. Schimke, R.T., Kaufman, R.J., Alt, F.W. & Kellems, R.F. Gene amplification and drug resistance in cultured murine cells. Science 202, 1051–1055 (1978).

    CAS  PubMed  Google Scholar 

  8. Juliano, R.L. & Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455, 152–162 (1976).

    CAS  PubMed  Google Scholar 

  9. Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med. 53, 615–627 (2002).

    CAS  PubMed  Google Scholar 

  10. Greaves, M. & Maley, C.C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yap, T.A., Gerlinger, M., Futreal, P.A., Pusztai, L. & Swanton, C. Intratumor heterogeneity: seeing the wood for the trees. Sci. Transl. Med. 4, 127ps110 (2010).

    Google Scholar 

  13. Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011).

    CAS  PubMed  Google Scholar 

  14. Garraway, L.A. & Janne, P.A. Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discov. 2, 214–226 (2012).

    CAS  PubMed  Google Scholar 

  15. de Bono, J.S. & Ashworth, A. Translating cancer research into targeted therapeutics. Nature 467, 543–549 (2010).

    CAS  PubMed  Google Scholar 

  16. Yap, T.A. & Workman, P. Exploiting the cancer genome: strategies for the discovery and clinical development of targeted molecular therapeutics. Annu. Rev. Pharmacol. Toxicol. 52, 549–573 (2012).

    CAS  PubMed  Google Scholar 

  17. Weinstein, I.B. Cancer. Addiction to oncogenes–the Achilles heal of cancer. Science 297, 63–64 (2002).

    CAS  PubMed  Google Scholar 

  18. Weinstein, I.B. & Joe, A. Oncogene addiction. Cancer Res. 68, 3077–3080, discussion 3080 (2008).

    CAS  PubMed  Google Scholar 

  19. Yap, T.A., Sandhu, S.K., Workman, P. & de Bono, J.S. Envisioning the future of early anticancer drug development. Nat. Rev. Cancer 10, 514–523 (2010).

    CAS  PubMed  Google Scholar 

  20. MacConaill, L.E. & Garraway, L.A. Clinical implications of the cancer genome. J. Clin. Oncol. 28, 5219–5228 (2010).

    PubMed  PubMed Central  Google Scholar 

  21. Druker, B.J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    CAS  PubMed  Google Scholar 

  22. Joensuu, H. et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N. Engl. J. Med. 344, 1052–1056 (2001).

    CAS  PubMed  Google Scholar 

  23. Sellers, W.R. A blueprint for advancing genetics-based cancer therapy. Cell 147, 26–31 (2011).

    CAS  PubMed  Google Scholar 

  24. Huang, M.E. et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72, 567–572 (1988).

    CAS  PubMed  Google Scholar 

  25. Slamon, D.J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    CAS  PubMed  Google Scholar 

  26. Mok, T.S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    CAS  PubMed  Google Scholar 

  27. Chapman, P.B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kwak, E.L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cunningham, D. et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351, 337–345 (2004).

    CAS  PubMed  Google Scholar 

  30. Geyer, C.E. et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. 355, 2733–2743 (2006).

    CAS  PubMed  Google Scholar 

  31. Fong, P.C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    CAS  PubMed  Google Scholar 

  32. Neckers, L. & Workman, P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin. Cancer Res. 18, 64–76 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Prinz, F., Schlange, T. & Asadullah, K. Believe it or not: how much can we rely on published data on potential drug targets? Nat. Rev. Drug Discov. 10, 712 (2011).

    CAS  PubMed  Google Scholar 

  34. Yun, C.H. et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA 105, 2070–2075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shah, N.P. et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2, 117–125 (2002).

    CAS  PubMed  Google Scholar 

  36. Choi, H.G. et al. A type-II kinase inhibitor capable of inhibiting the T315I “gatekeeper” mutant of Bcr-Abl. J. Med. Chem. 53, 5439–5448 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Catalanotti, F. & Solit, D.B. Will Hsp90 Inhibitors Prove Effective in BRAF-Mutant Melanomas? Clin. Cancer Res. 18, 2420–2422 (2012).

    CAS  PubMed  Google Scholar 

  38. Johannessen, C.M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968–972 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Poulikakos, P.I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Xing, F. et al. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF. Oncogene 31, 446–457 (2012).

    CAS  PubMed  Google Scholar 

  41. Chen, R. et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148, 1293–1307 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Halling-Brown, M.D., Bulusu, K.C., Patel, M., Tym, J.E. & Al-Lazikani, B. canSAR: an integrated cancer public translational research and drug discovery resource. Nucleic Acids Res. 40, D947–D956 (2012).

    CAS  PubMed  Google Scholar 

  43. Futreal, P.A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hawkins, R.D., Hon, G.C. & Ren, B. Next-generation genomics: an integrative approach. Nat. Rev. Genet. 11, 476–486 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Iadevaia, S., Lu, Y., Morales, F.C., Mills, G.B. & Ram, P.T. Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res. 70, 6704–6714 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yan, H., Zhang, B., Li, S. & Zhao, Q. A formal model for analyzing drug combination effects and its application in TNF-alpha-induced NFkappaB pathway. BMC Syst. Biol. 4, 50 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. Coiffier, B. et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 235–242 (2002).

    CAS  PubMed  Google Scholar 

  48. Sobrero, A.F. et al. EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 2311–2319 (2008).

    CAS  PubMed  Google Scholar 

  49. Jackman, A., Kaye, S. & Workman, P. The combination of cytotoxic and molecularly targeted therapies - can it be done? Drug Discov. Today 1, 445–454 (2004).

    CAS  Google Scholar 

  50. Rodon, J., Perez, J. & Kurzrock, R. Combining targeted therapies: practical issues to consider at the bench and bedside. Oncologist 15, 37–50 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Albain, K.S. et al. Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet 374, 2055–2063 (2009).

    PubMed  PubMed Central  Google Scholar 

  52. Garrett, M.D. & Collins, I. Anticancer therapy with checkpoint inhibitors: what, where and when? Trends Pharmacol. Sci. 32, 308–316 (2011).

    CAS  PubMed  Google Scholar 

  53. Sergina, N.V. et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445, 437–441 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nahta, R., Hung, M.C. & Esteva, F.J. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res. 64, 2343–2346 (2004).

    CAS  PubMed  Google Scholar 

  55. Chandarlapaty, S. et al. Inhibitors of HSP90 block p95–HER2 signaling in Trastuzumab-resistant tumors and suppress their growth. Oncogene 29, 325–334 (2010).

    CAS  PubMed  Google Scholar 

  56. Modi, S. et al. Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J. Clin. Oncol. 25, 5410–5417 (2007).

    CAS  PubMed  Google Scholar 

  57. Eccles, S.A. et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res. 68, 2850–2860 (2008).

    CAS  PubMed  Google Scholar 

  58. Kelland, L.R., Sharp, S.Y., Rogers, P.M., Myers, T.G. & Workman, P. DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J. Natl. Cancer Inst. 91, 1940–1949 (1999).

    CAS  PubMed  Google Scholar 

  59. Gaspar, N. et al. P. Acquired resistance to 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) in glioblastoma cells. Cancer Res. 69, 1966–1975 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kataoka, Y. et al. Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines. Ann. Oncol. 21, 255–262 (2010).

    CAS  PubMed  Google Scholar 

  61. Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6, 117–127 (2004).

    CAS  PubMed  Google Scholar 

  62. de Bono, J.S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Scher, H.I. et al. Prostate Cancer Foundation/Department of Defense Prostate Cancer Clinical Trials Consortium. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet 375, 1437–1446 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Meng, J. et al. High level of AKT activity is associated with resistance to MEK inhibitor AZD6244 (ARRY-142886). Cancer Biol. Ther. 8, 2073–2080 (2009).

    CAS  PubMed  Google Scholar 

  65. Meng, J. et al. Combination treatment with MEK and AKT inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo. PLoS ONE 5, e14124 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tolcher, A. et al. A phase I dose escalation study of oral MK-2206 (allosteric AKT inhibitor) with oral selumetinib (AZD6244; MEK inhibitor) in patients with advanced or metastatic solid tumours. J. Clin. Oncol. 29 (suppl.), Abstract 3004 (2011).

    Google Scholar 

  67. Shah, O.J., Wang, Z. & Hunter, T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr. Biol. 14, 1650–1656 (2004).

    CAS  PubMed  Google Scholar 

  68. Rodrik-Outmezguine, V.S. et al. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov. 1, 248–259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cosimo, S. et al. A phase I study of the mTOR inhibitor ridaforolimus (RIDA) in combination with IGFR-1R antibody dalotozumab (DALO) in patients with advanced tumours. J. Clin. Oncol. 28 (suppl.), Abstract 3008 (2010).

  70. Falchook, G. et al. A phase I study of bevacizumab in combination with sunitinib, sorafenib and erlotinib plus cituximab and trastuzumab plus lapatinib. J. Clin. Oncol. 28 (suppl.), Abstract 2512 (2010).

    Google Scholar 

  71. Heidorn, S.J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Poulikakos, P.I., Zhang, C., Bollag, G., Shokat, K.M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Infante, J. et al. Phase I/II study to assess safely, pharmacokinetics and efficacy of the oral MEK 1/2 inhibitor GSK1120212 (GSK212) dosed in combination with the oral BRAF inhibitor GSK2118436 (GSK436). J. Clin. Oncol. 29 (suppl.), Abstract CRA8503 (2011).

    Google Scholar 

  74. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    CAS  PubMed  Google Scholar 

  75. Wells, S.A. Jr. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J. Clin. Oncol. 30, 134–141 (2012).

    CAS  PubMed  Google Scholar 

  76. Eder, J.P. et al. A phase I study of foretinib, a multi-targeted inhibitor of c-Met and vascular endothelial growth factor receptor 2. Clin. Cancer Res. 16, 3507–3516 (2010).

    CAS  PubMed  Google Scholar 

  77. George, S. et al. Efficacy and safety of regorafenib in patients with metastatic and/or unresectable GI stromal tumor after failure of imatinib and sunitinib: a multicenter phase ii trial. J. Clin. Oncol., published online, doi: 10.1200/JCO.2011.39.9394 (21 May 2012).

  78. Apsel, B. et al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat. Chem. Biol. 4, 691–699 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Shuttleworth, S.J. et al. Progress in the preclinical discovery and clinical development of class I and dual class I/IV phosphoinositide 3-kinase (PI3K) inhibitors. Curr. Med. Chem. 18, 2686–2714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pearl, L.H., Prodromou, C. & Workman, P. The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem. J. 410, 439–453 (2008).

    CAS  PubMed  Google Scholar 

  81. Banerji, U. Heat shock protein 90 as a drug target: some like it hot. Clin. Cancer Res. 15, 9–14 (2009).

    CAS  PubMed  Google Scholar 

  82. Lane, A.A. & Chabner, B.A. Histone deacetylase inhibitors in cancer therapy. J. Clin. Oncol. 27, 5459–5468 (2009).

    CAS  PubMed  Google Scholar 

  83. Moffat, D. et al. Discovery of 2-(6-{[(6-fluoroquinolin-2-yl)methyl]amino}bicyclo[3.1.0]hex-3-yl)-N-hydroxypyrim idine-5-carboxamide (CHR-3996), a class I selective orally active histone deacetylase inhibitor. J. Med. Chem. 53, 8663–8678 (2010).

    CAS  PubMed  Google Scholar 

  84. Sharma, S.V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hodi, F.S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  87. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next-generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  88. De Palma, M. & Hanahan, D. The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities. Mol. Oncol. 6, 111–127 (2012).

    PubMed  PubMed Central  Google Scholar 

  89. Keith, C.T., Borisy, A.A. & Stockwell, B.R. Multicomponent therapeutics for networked systems. Nat. Rev. Drug Discov. 4, 71–78 (2005).

    CAS  PubMed  Google Scholar 

  90. Lee, M.S. et al. The novel combination of chlorpromazine and pentamidine exerts synergistic antiproliferative effects through dual mitotic action. Cancer Res. 67, 11359–11367 (2007).

    CAS  PubMed  Google Scholar 

  91. Lehar, J., Stockwell, B.R., Giaever, G. & Nislow, C. Combination chemical genetics. Nat. Chem. Biol. 4, 674–681 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wei, G. et al. Chemical genomics identifies small-molecule MCL1 repressors and BCL-xL as a predictor of MCL1 dependency. Cancer Cell 21, 547–562 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Iorns, E., Lord, C.J., Turner, N. & Ashworth, A. Utilizing RNA interference to enhance cancer drug discovery. Nat. Rev. Drug Discov. 6, 556–568 (2007).

    CAS  PubMed  Google Scholar 

  94. Mullenders, J. & Bernards, R. Loss-of-function genetic screens as a tool to improve the diagnosis and treatment of cancer. Oncogene 28, 4409–4420 (2009).

    CAS  PubMed  Google Scholar 

  95. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Giaever, G. et al. Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc. Natl. Acad. Sci. USA 101, 793–798 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007).

    CAS  PubMed  Google Scholar 

  98. Iorns, E. et al. Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 13, 91–104 (2008).

    CAS  PubMed  Google Scholar 

  99. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    CAS  PubMed  Google Scholar 

  100. Garnett, M.J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Loewe, S. Die quantitativen. Probleme der Pharmakologie. Ergeb. Physiol. 27, 47–187 (1928).

    Google Scholar 

  103. Goldie, J.H. & Coldman, A.J. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep. 63, 1727–1733 (1979).

    CAS  PubMed  Google Scholar 

  104. Chou, T.C. & Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22, 27–55 (1984).

    CAS  PubMed  Google Scholar 

  105. Berenbaum, M.C. The expected effect of a combination of agents: the general solution. J. Theor. Biol. 114, 413–431 (1985).

    CAS  PubMed  Google Scholar 

  106. Harrap, K.R. & Jackson, R.C. Enzyme kinetics and combination chemotherapy: an appraisal of current concepts. Adv. Enzyme Regul. 13, 77–96 (1975).

    CAS  PubMed  Google Scholar 

  107. Jackson, R.C. Kinetic simulation of anticancer drug interactions. Int. J. Biomed. Comput. 11, 197–224 (1980).

    CAS  PubMed  Google Scholar 

  108. Lehar, J. et al. Chemical combination effects predict connectivity in biological systems. Mol. Syst. Biol. 3, 80 (2007).

    PubMed  PubMed Central  Google Scholar 

  109. Peifer, M. et al. Analysis of compound synergy in high-throughput cellular screens by population-based lifetime modeling. PLoS ONE 5, e8919 (2010).

    PubMed  PubMed Central  Google Scholar 

  110. Hood, L., Heath, J.R., Phelps, M.E. & Lin, B. Systems biology and new technologies enable predictive and preventative medicine. Science 306, 640–643 (2004).

    CAS  PubMed  Google Scholar 

  111. Lage, K. et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat. Biotechnol. 25, 309–316 (2007).

    CAS  PubMed  Google Scholar 

  112. Little, M.P. Cancer models, genomic instability and somatic cellular Darwinian evolution. Biol. Direct 5, 19 (2010).

    PubMed  PubMed Central  Google Scholar 

  113. Gerlinger, M. & Swanton, C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br. J. Cancer 103, 1139–1143 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Campbell, P.J. et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc. Natl. Acad. Sci. USA 105, 13081–13086 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Komarova, N.L. & Wodarz, D. Evolutionary dynamics of mutator phenotypes in cancer: implications for chemotherapy. Cancer Res. 63, 6635–6642 (2003).

    CAS  PubMed  Google Scholar 

  117. Foo, J. & Michor, F. Evolution of resistance to anti-cancer therapy during general dosing schedules. J. Theor. Biol. 263, 179–188 (2010).

    PubMed  Google Scholar 

  118. Chmielecki, J. et al. Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci. Transl. Med. 3, 90ra59 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Mumenthaler, S.M. et al. Evolutionary modeling of combination treatment strategies to overcome resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Mol. Pharm. 8, 2069–2079 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Saez-Rodriguez, J. et al. Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. Cancer Res. 71, 5400–5411 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hughey, J.J., Lee, T.K. & Covert, M.W. Computational modeling of mammalian signaling networks. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 194–209 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Clarke, P.A., te Poele, R., Wooster, R. & Workman, P. Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem. Pharmacol. 62, 1311–1336 (2001).

    CAS  PubMed  Google Scholar 

  123. Haw, R., Hermjakob, H., D'Eustachio, P. & Stein, L. Reactome pathway analysis to enrich biological discovery in proteomics data sets. Proteomics 11, 3598–3613 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Lu, Y. et al. Kinome siRNA-phosphoproteomic screen identifies networks regulating AKT signaling. Oncogene 30, 4567–4577 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Geho, D.H., Petricoin, E.F., Liotta, L.A. & Araujo, R.P. Modeling of protein signaling networks in clinical proteomics. Cold Spring Harb. Symp. Quant. Biol. 70, 517–524 (2005).

    CAS  PubMed  Google Scholar 

  126. Huang, P.H. et al. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc. Natl. Acad. Sci. USA 104, 12867–12872 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Mulero-Navarro, S. & Esteller, M. Epigenetic biomarkers for human cancer: the time is now. Crit. Rev. Oncol. Hematol. 68, 1–11 (2008).

    PubMed  Google Scholar 

  128. Hornbeck, P.V., Chabra, I., Kornhauser, J.M., Skrzypek, E. & Zhang, B. PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics 4, 1551–1561 (2004).

    CAS  PubMed  Google Scholar 

  129. Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D.A. & Nolan, G.P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).

    CAS  PubMed  Google Scholar 

  130. Takahashi, K., Tanase-Nicola, S. & ten Wolde, P.R. Spatio-temporal correlations can drastically change the response of a MAPK pathway. Proc. Natl. Acad. Sci. USA 107, 2473–2478 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Huang, S. & Ingber, D.E. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp. Cell Res. 261, 91–103 (2000).

    CAS  PubMed  Google Scholar 

  132. Morris, M.K., Saez-Rodriguez, J., Clarke, D.C., Sorger, P.K. & Lauffenburger, D.A. Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput. Biol. 7, e1001099 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Natarajan, M., Lin, K.M., Hsueh, R.C., Sternweis, P.C. & Ranganathan, R. A global analysis of cross-talk in a mammalian cellular signalling network. Nat. Cell Biol. 8, 571–580 (2006).

    CAS  PubMed  Google Scholar 

  134. Folger, O. et al. Predicting selective drug targets in cancer through metabolic networks. Mol. Syst. Biol. 7, 501 (2011).

    PubMed  PubMed Central  Google Scholar 

  135. Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee, M.J. et al. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149, 780–794 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhao, X.M. et al. Prediction of drug combinations by integrating molecular and pharmacological data. PLoS Comput. Biol. 7, e1002323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ayyadurai, V.A. & Dewey, C.F. CytoSolve: a scalable computational method for dynamic integration of multiple molecular pathway models. Cell Mol. Bioeng. 4, 28–45 (2011).

    CAS  PubMed  Google Scholar 

  139. Li, C. et al. BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst. Biol. 4, 92 (2010).

    PubMed  PubMed Central  Google Scholar 

  140. Workman, P., Clarke, P.A. & Al-Lazikani, B. Personalized medicine: patient-predictive panel power. Cancer Cell 21, 455–458 (2012).

    CAS  PubMed  Google Scholar 

  141. Workman, P. et al. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer 102, 1555–1577 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Dow, L.E. & Lowe, S.W. Life in the fast lane: mammalian disease models in the genomics era. Cell 148, 1099–1109 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Singh, M., Murriel, C.L. & Johnson, L. Genetically engineered mouse models: closing the gap between preclinical data and trial outcomes. Cancer Res. 72, 2695–2700 (2012).

    CAS  PubMed  Google Scholar 

  144. Singh, M. et al. Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models. Nat. Biotechnol. 28, 585–593 (2010).

    CAS  PubMed  Google Scholar 

  145. Engelman, J.A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14, 1351–1356 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Duncan, J.S. et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149, 307–321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Solit, D.B. et al. Pulsatile administration of the epidermal growth factor receptor inhibitor gefitinib is significantly more effective than continuous dosing for sensitizing tumors to paclitaxel. Clin. Cancer Res. 11, 1983–1989 (2005).

    CAS  PubMed  Google Scholar 

  148. Yap, T.A., Omlin, A. & de Bono, J.S. The development of therapeutic combinations targeting major cancer signaling pathways. J. Clin. Oncol. (in the press).

  149. Hoelder, S., Clarke, P.A. & Workman, P. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol. 6, 155–176 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Baselga, J. et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 366, 520–529 (2012).

    CAS  PubMed  Google Scholar 

  151. Higgins, M.J. et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin. Cancer Res. published online, doi:10.1158/1078-0432 (15 March 2012).

  152. Baum, M. et al. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359, 2131–2139 (2002).

    CAS  PubMed  Google Scholar 

  153. Coombes, R.C. et al. Survival and safety of exemestane versus tamoxifen after 2–3 years' tamoxifen treatment (Intergroup Exemestane Study): a randomised controlled trial. Lancet 369, 559–570 (2007).

    CAS  PubMed  Google Scholar 

  154. Berry, D.A. Adaptive clinical trials in oncology. Nat. Rev. Clin. Oncol. 9, 199–207 (2012).

    CAS  Google Scholar 

  155. Edwards, A.M., Bountra, C., Kerr, D.J. & Willson, T.M. Open access chemical and clinical probes to support drug discovery. Nat. Chem. Biol. 5, 436–440 (2009).

    CAS  PubMed  Google Scholar 

  156. Woodcock, J., Griffin, J.P. & Behrman, R.E. Development of novel combination therapies. N. Engl. J. Med. 364, 985–987 (2011).

    CAS  PubMed  Google Scholar 

  157. Brody, H. From an ethics of rationing to an ethics of waste avoidance. N. Engl. J. Med. 366, 1949–1951 (2012).

    CAS  PubMed  Google Scholar 

  158. Bray, F., Jemal, A., Grey, N., Ferlay, J. & Forman, D. Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. Lancet Oncol. published online, doi:10.1016/S1470-2045(12)70211-52012 (1 June 2012).

  159. Salwinski, L. et al. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Aranda, B. et al. The IntAct molecular interaction database in 2010. Nucleic Acids Res. 38, D525–D531 (2010).

    CAS  PubMed  Google Scholar 

  161. Ceol, A. et al. MINT, the molecular interaction database: 2009 update. Nucleic Acids Res. 38, D532–D539 (2010).

    CAS  PubMed  Google Scholar 

  162. Cerami, E.G. et al. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 39, D685–D690 (2011).

    CAS  PubMed  Google Scholar 

  163. Bickerton, G.R., Higueruelo, A.P. & Blundell, T.L. Comprehensive, atomic-level characterization of structurally characterized protein-protein interactions: the PICCOLO database. BMC Bioinformatics 12, 313 (2011).

    PubMed  PubMed Central  Google Scholar 

  164. Croft, D. et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 39, D691–D697 (2011).

    CAS  PubMed  Google Scholar 

  165. Sims, D. et al. ROCK: a breast cancer functional genomics resource. Breast Cancer Res. Treat. 124, 567–572 (2010).

    CAS  PubMed  Google Scholar 

  166. Szklarczyk, D. et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–D568 (2011).

    CAS  PubMed  Google Scholar 

  167. Stark, C. et al. The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 39, D698–D704 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge core support to the Cancer Therapeutics Unit from Cancer Research UK (program grant C309/A8274); P.W. is a Cancer Research UK Life Fellow (C309/8992). P.W. and U.B. acknowledge Experimental Cancer Centre (ECMC) Funding to the Drug Development Unit from Cancer Research UK, National Institute of Health Research (NIHR) and the Department of Health. All authors acknowledge funding from the National Health Service to the NIHR Biomedical Research Centre at the Institute of Cancer Research and the Royal Marsden Hospital. We thank V. Cornwell and A. Ford for excellent administrative support and our colleagues for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bissan Al-Lazikani, Udai Banerji or Paul Workman.

Ethics declarations

Competing interests

The authors are members of the Institute of Cancer Research (ICR), which has commercial interest in inhibitors of CYP17, HSP90, PI3 Kinase, PKB and histone deacetylase, and operates a 'Rewards to Inventors' scheme. P.W. and ICR colleagues have received research funding from Cougar Biotechnology, Johnson & Johnson, Vernalis, Yamanouchi, Piramed Pharma (acquired by Roche), Astex Pharmaceuticals, AstraZeneca and Chroma Therapeutics. P.W. has been/is a consultant/scientific advisory board member for Novartis, Piramed Pharma, Astex Pharmaceuticals, Chroma Therapeutics, Kudos Pharmaceuticals, Wilex and Nextech Invest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Lazikani, B., Banerji, U. & Workman, P. Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol 30, 679–692 (2012). https://doi.org/10.1038/nbt.2284

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2284

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer