Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Parallel on-chip gene synthesis and application to optimization of protein expression

Abstract

Low-cost, high-throughput gene synthesis and precise control of protein expression are of critical importance to synthetic biology and biotechnology1,2,3. Here we describe the development of an on-chip gene synthesis technology, which integrates on a single microchip the synthesis of DNA oligonucleotides using inkjet printing, isothermal oligonucleotide amplification and parallel gene assembly. Use of a mismatch-specific endonuclease for error correction results in an error rate of 0.19 errors per kb. We applied this approach to synthesize pools of thousands of codon-usage variants of lacZα and 74 challenging Drosophila protein antigens, which were then screened for expression in Escherichia coli. In one round of synthesis and screening, we obtained DNA sequences that were expressed at a wide range of levels, from zero to almost 60% of the total cell protein mass. This technology may facilitate systematic investigation of the molecular mechanisms of protein translation and the design, construction and evolution of macromolecular machines, metabolic networks and synthetic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The integrated on-chip oligo array synthesis, amplification and gene assembly process.
Figure 2: Expression of synthetic lacZα codon variants in E. coli.
Figure 3: Optimization of protein expression.

Similar content being viewed by others

References

  1. Tian, J., Ma, K. & Saaem, I. Advancing high-throughput gene synthesis technology. Mol. Biosyst. 5, 714–722 (2009).

    Article  CAS  Google Scholar 

  2. Carr, P.A. & Church, G.M. Genome engineering. Nat. Biotechnol. 27, 1151–1162 (2009).

    Article  CAS  Google Scholar 

  3. Welch, M., Villalobos, A., Gustafsson, C. & Minshull, J. You're one in a googol: optimizing genes for protein expression. J. R. Soc. Interface 6 Suppl 4, S467–S476 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Patwardhan, R.P. et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol. 27, 1173–1175 (2009).

    Article  CAS  Google Scholar 

  5. Pfleger, B.F., Pitera, D.J., Smolke, C.D. & Keasling, J.D. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24, 1027–1032 (2006).

    Article  CAS  Google Scholar 

  6. Salis, H.M., Mirsky, E.A. & Voigt, C.A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article  CAS  Google Scholar 

  7. Isaacs, F.J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22, 841–847 (2004).

    Article  CAS  Google Scholar 

  8. Kudla, G., Murray, A.W., Tollervey, D. & Plotkin, J.B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258 (2009).

    Article  CAS  Google Scholar 

  9. Coleman, J.R. et al. Virus attenuation by genome-scale changes in codon pair bias. Science 320, 1784–1787 (2008).

    Article  CAS  Google Scholar 

  10. Dueber, J.E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article  CAS  Google Scholar 

  11. Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    Article  CAS  Google Scholar 

  12. Danino, T., Mondragon-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. Nature 463, 326–330 (2010).

    Article  CAS  Google Scholar 

  13. Ellis, T., Wang, X. & Collins, J.J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol. 27, 465–471 (2009).

    Article  CAS  Google Scholar 

  14. Tabor, J.J. et al. A synthetic genetic edge detection program. Cell 137, 1272–1281 (2009).

    Article  Google Scholar 

  15. Gibson, D.G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

    Article  CAS  Google Scholar 

  16. Tian, J. et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432, 1050–1054 (2004).

    Article  CAS  Google Scholar 

  17. Zhou, X. et al. Microfluidic PicoArray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences. Nucleic Acids Res. 32, 5409–5417 (2004).

    Article  CAS  Google Scholar 

  18. Richmond, K.E. et al. Amplification and assembly of chip-eluted DNA (AACED): a method for high-throughput gene synthesis. Nucleic Acids Res. 32, 5011–5018 (2004).

    Article  CAS  Google Scholar 

  19. Borovkov, A.Y. et al. High-quality gene assembly directly from unpurified mixtures of microarray-synthesized oligonucleotides. Nucleic Acids Res. 38, e180 (2010).

    Article  Google Scholar 

  20. Kosuri, S. et al. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat. Biotechnol. 28, 1295–1299 (2010).

    Article  CAS  Google Scholar 

  21. Saaem, I., Ma, K., Marchi, A., LaBean, T. & Tian, J. In situ synthesis of DNA microarray on functionalized cyclic olefin copolymer substrate. ACS Applied Materials & Interfaces 2, 491–497 (2010).

    Article  CAS  Google Scholar 

  22. Ma, K.-S., Reza, F., Saaem, I. & Tian, J. Versatile surface functionalization of cyclic olefin copolymer (COC) with sputtered SiO2 thin film for potential BioMEMS applications. J. Mater. Chem. 19, 7914–7920 (2009).

    Article  CAS  Google Scholar 

  23. Huang, M.C., Ye, H., Kuan, Y.K., Li, M.H. & Ying, J.Y. Integrated two-step gene synthesis in a microfluidic device. Lab Chip 9, 276–285 (2009).

    Article  CAS  Google Scholar 

  24. Qiu, P. et al. Mutation detection using Surveyor nuclease. Biotechniques 36, 702–707 (2004).

    Article  CAS  Google Scholar 

  25. The ENCODE Project Consortium. The E.N.C.O.D.E. (ENCyclopedia Of DNA Elements) Project. Science 306, 636–640 (2004).

  26. Nakamura, Y., Gojobori, T. & Ikemura, T. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. 28, 292 (2000).

    Article  CAS  Google Scholar 

  27. Quan, J. & Tian, J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE 4, e6441 (2009).

    Article  Google Scholar 

  28. Sharp, P.M. & Li, W.H. The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987).

    Article  CAS  Google Scholar 

  29. Lamprecht, M.R., Sabatini, D.M. & Carpenter, A.E. CellProfiler: free, versatile software for automated biological image analysis. Biotechniques 42, 71–75 (2007).

    Article  CAS  Google Scholar 

  30. Quan, J. & Tian, J. Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat. Protoc. 6, 242–251 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z. Chen, K. Ma and Q. Wang for excellent technical contributions. The project was supported by the Beckman foundation, The Hartwell Foundation, and a Coulter-Duke translational partnership award to J.T.

Author information

Authors and Affiliations

Authors

Contributions

J.Q. performed gene library synthesis, expression screen and protein purification experiments. I.S. performed on-chip oligo and gene synthesis experiments. N.T. and J.Q. performed colony imaging and image analysis. S.M., I.S. and J.Q. performed error correction experiments. N.N. and K.P.W. provided wild-type transcription factor sequences and clones. H.G. and J.T. designed gene library sequences. J.T. designed overall strategy and supervised the project. All authors contributed to the manuscript preparation.

Corresponding author

Correspondence to Jingdong Tian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3, Supplementary Figs. 1–4, Supplementary Sequences and Supplementary Note (PDF 698 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, J., Saaem, I., Tang, N. et al. Parallel on-chip gene synthesis and application to optimization of protein expression. Nat Biotechnol 29, 449–452 (2011). https://doi.org/10.1038/nbt.1847

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1847

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing