Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides

Abstract

A fundamental goal in biotechnology and biology is the development of approaches to better understand the genetic basis of traits. Here we report a versatile method, trackable multiplex recombineering (TRMR), whereby thousands of specific genetic modifications are created and evaluated simultaneously. To demonstrate TRMR, in a single day we modified the expression of >95% of the genes in Escherichia coli by inserting synthetic DNA cassettes and molecular barcodes upstream of each gene. Barcode sequences and microarrays were then used to quantify population dynamics. Within a week we mapped thousands of genes that affect E. coli growth in various media (rich, minimal and cellulosic hydrolysate) and in the presence of several growth inhibitors (β-glucoside, D-fucose, valine and methylglyoxal). This approach can be applied to a broad range of traits to identify targets for future genome-engineering endeavors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRMR method.
Figure 2: Multiplex strategy to rapidly generate cell mixtures with defined genetic modifications.
Figure 3: Analysis of synDNA and cell library.
Figure 4: Trait-conferring genotypes identified in four selective environments.
Figure 5: Alleles identified during pooled growth in media and cellulosic hydrolysate.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Fox, R.J. et al. Improving catalytic function by ProSAR-driven enzyme evolution. Nat. Biotechnol. 25, 338–344 (2007).

    CAS  PubMed  Google Scholar 

  2. Turner, N.J. Directed evolution drives the next generation of biocatalysts. Nat. Chem. Biol. 5, 567–573 (2009).

    CAS  PubMed  Google Scholar 

  3. Winzeler, E.A. et al. Functional characterization of the S. cervisiase genome by gene geletion and parallel analysis. Science 285, 901–906 (1999).

    CAS  PubMed  Google Scholar 

  4. Fodor, S. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).

    CAS  PubMed  Google Scholar 

  5. Blanchard, A.P., Kaiser, R.J. & Hood, L.E. High-density oligonucleotide arrays. Biosens. Bioelectron. 11, 687–690 (1996).

    CAS  Google Scholar 

  6. Singh-Gasson, S. et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotechnol. 17, 974–978 (1999).

    CAS  PubMed  Google Scholar 

  7. Cleary, M.A. et al. Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis. Nat. Methods 1, 241–248 (2004).

    CAS  PubMed  Google Scholar 

  8. Ghindilis, A. et al. CombiMatrix oligonucleotide arrays: genotyping and gene expression assays employing electrochemical detection. Biosens. Bioelectron. 22, 1853–1860 (2007).

    CAS  PubMed  Google Scholar 

  9. Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 5978–5983 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Murphy, K. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J. Bacteriol. 180, 2063–2071 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, Y., Buchholz, F., Muyrers, J. & Stewart, A.F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

    CAS  PubMed  Google Scholar 

  12. Shoemaker, D.D., Lashkari, D.A., Morris, D., Mittmann, M. & Davis, R.W. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat. Genet. 14, 450–456 (1996).

    CAS  PubMed  Google Scholar 

  13. Cho, R.J. et al. Parallel analysis of genetic selections using whole genome oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 95, 3752–3757 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gill, R.T. et al. Genome wide screening for trait conferring genes using DNA micro-arrays. Proc. Natl. Acad. Sci. USA 99, 7033–7038 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lynch, M.D., Warnecke, T. & Gill, R.T. SCALEs: multiscale analysis of library enrichment. Nat. Methods 4, 87–93 (2007).

    CAS  PubMed  Google Scholar 

  16. Badarinarayana, V. et al. Selection analyses of insertional mutants using subgenic resolution arrays. Nat. Biotechnol. 19, 1060–1065 (2001).

    CAS  PubMed  Google Scholar 

  17. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    CAS  PubMed  Google Scholar 

  18. Ho, C.H. et al. A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nat. Biotechnol. 27, 369–377 (2009).

    CAS  PubMed  Google Scholar 

  19. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 1–11 (2006).

    Google Scholar 

  20. Kitagawa, M. et al. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 12, 291–299 (2006).

    Google Scholar 

  21. Datsenko, K. & Wanner, B. One-step inactivation of chromosomal genes in E. coli K12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ellis, H.M., Yu, D., DiTizio, T. & Court, D.L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. USA 98, 6742–6746 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Datta, S., Costantino, N., Zhou, X. & Court, D.L. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proc. Natl. Acad. Sci. USA 105, 1626–1631 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, H. et al. Programming cells by multiplex genome engineering and accelerate evolution. Nature 460, 894–898 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichis coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shine, J. & Dalgarno, L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA 71, 1342–1346 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kimura, M., Takatsuki, A., Yamaguchi, I. & Blasticidin, S. Deaminase gene from Aspergillus terreus (BSD): a new drug resistance gene for transfection of mammalian cells. Biochim. Biophys. Acta 1219, 653–659 (1994).

    PubMed  Google Scholar 

  28. Pierce, S.E. et al. A unique and universal molecular barcode array. Nat. Methods 3, 601–603 (2006).

    CAS  PubMed  Google Scholar 

  29. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Culin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Markham, N.R. & Zuker, M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 33, W577–W581 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Defez, R. & de Felice, M. Cryptic operon for beta-glucoside metabolism in Escherichia coli K12: genetic evidence for a regulatory protein. Genetics 97, 11–25 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Meijnen, J.P., de Winde, J.H. & Ruijssenaars, H.J. Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose. Appl. Environ. Microbiol. 74, 5031–5037 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu, M.M., Skraly, F.A. & Cameron, D.C. Accumulation of methylglyoxal in anaerobically grown Escherichia coli and its detoxification by expression of the Pseudomonas putida glyoxalase i gene. Metab. Eng. 3, 218–225 (2001).

    CAS  PubMed  Google Scholar 

  34. Gort, A.S., Ferber, D.M. & Imlay, J.A. The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli. Mol. Microbiol. 32, 179–191 (1999).

    CAS  PubMed  Google Scholar 

  35. Sutton, A., Newman, T., Francis, M. & Freundlich, M. Valine-resistant Escherichia coli K-12 strains with mutations in the ilvB operon. J. Bacteriol. 148, 998–1001 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Weinstock, O., Sella, C., Chipman, D.M. & Barak, Z. Properties of subcloned subunits of bacterial acetohydroxy acid synthases. J. Bacteriol. 174, 5560–5566 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wessler, S.R. & Calvo, J.M. Control of leu operon expression in Escherichia coli by a transcription attenuation mechanism. J. Mol. Biol. 149, 579–597 (1981).

    CAS  PubMed  Google Scholar 

  38. Sycheva, E.V. et al. Overproduction of noncanonical amino acids by Escherichia coli cells. Microbiology 76, 712–718 (2007).

    CAS  Google Scholar 

  39. Chen, S.F., Mowery, R.A., Castleberry, V.A., van Walsum, G.P. & Chambliss, C.K. High-performance liquid chromatography method for simultaneous determination of aliphatic acid, aromatic acid and neutral degradation products in biomass pretreatment hydrolysates. J. Chromatogr. A 1104, 54–61 (2006).

    CAS  PubMed  Google Scholar 

  40. Mohagheghi, A. & Schell, D.J. Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol. Biotechnol. Bioeng. 105, 992–996 (2010).

    CAS  PubMed  Google Scholar 

  41. Ferrante, A.A., Augliera, J., Lewis, K. & Klibanov, A.M. Cloning of an organic solvent-resistance gene in Escherichia coli: the unexpected role of alkylhydroperoxide reductase. Proc. Natl. Acad. Sci. USA 92, 7617–7621 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Poole, L.B. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch. Biochem. Biophys. 433, 240–254 (2005).

    CAS  PubMed  Google Scholar 

  43. Seaver, L.C. & Imlay, J.A. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 183, 7173–7181 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A. & Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    CAS  PubMed  Google Scholar 

  45. Lu, T.K., Khalil, A.S. & Collins, J.J. Next-generation synthetic gene networks. Nat. Biotechnol. 27, 1139–1150 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Datta, S., Constantino, N. & Court, D.L. A set of recombineering plasmids for gram-negative bacteria. Gene 379, 109–115 (2006).

    CAS  PubMed  Google Scholar 

  47. Pierce, S.E., Davis, R.W., Nislow, C. & Giaever, G. Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat. Protoc. 2, 2958–2974 (2007).

    CAS  PubMed  Google Scholar 

  48. Nour-Eldin, H.H., Hansen, B.G., Norholm, M.H.H., Jensen, J.K. & Halkier, B.A. Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res. 34, e122 (2006).

    PubMed  PubMed Central  Google Scholar 

  49. Dean, F.B., Nelson, J.R., Giesler, T.L. & Lasken, R.S. Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 11, 1095–1099 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Perni, S., Andrew, P.W. & Shama, G. Estimating the maximum growth rate from microbial growth curves: definition is everything. Food Microbiol. 22, 491–495 (2005).

    Google Scholar 

Download references

Acknowledgements

We thank D. Court (Center for Cancer Research, National Cancer Institute at Frederick, Maryland) for sharing plasmid pSIM5, C. Nislow and G. Giaever (University of Toronto, Ontario) for help with microarray analysis, A. Mohagheghi and M. Zhang (US National Renewable Energy Laboratories) for hydrolysate samples, M. O'Donnell for help in preparation of selective agar plates, Agilent for access to the Oligonucleotide Library Synthesis product, and H. Marshall and the University of Colorado Microarray Facility for molecular barcode genotyping. The authors appreciate financial support provided by Shell, the Colorado Center for Biorefining and Biofuels (http://www.C2B2web.org) and the Colorado Energy Initiative (http://rasei.colorado.edu).

Author information

Authors and Affiliations

Authors

Contributions

J.R.W. and R.T.G. conceived the study; J.R.W. designed and performed all experiments except for growth selections and allele confirmations in hydrolysate, which were conducted by P.J.R.; A.K.-F. aided J.R.W. in selection of targeting sequences and selection of barcode tags; A.K.-F. and P.J.R. assigned gene ontology terms; L.B.A.W. aided J.R.W. in selection design and microarray analysis; L.B.A.W. constructed circle plots; P.J.R., A.K.-F. and L.B.A.W. helped in manuscript preparation; J.R.W. and R.T.G. wrote the manuscript; R.T.G. supervised all aspects of the study.

Corresponding author

Correspondence to Ryan T Gill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 2–6, Supplementary Notes and Supplementary Figs. 1–4 (PDF 5193 kb)

Supplementary Table 1

Targeting oligo sequences, tag sequences, and 2-state hybridization energies. (XLS 2731 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warner, J., Reeder, P., Karimpour-Fard, A. et al. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28, 856–862 (2010). https://doi.org/10.1038/nbt.1653

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1653

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing