Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

A mouse knockout library for secreted and transmembrane proteins

Abstract

Large collections of knockout organisms facilitate the elucidation of gene functions. Here we used retroviral insertion or homologous recombination to disrupt 472 genes encoding secreted and membrane proteins in mice, providing a resource for studying a large fraction of this important class of drug target. The knockout mice were subjected to a systematic phenotypic screen designed to uncover alterations in embryonic development, metabolism, the immune system, the nervous system and the cardiovascular system. The majority of knockout lines exhibited altered phenotypes in at least one of these therapeutic areas. To our knowledge, a comprehensive phenotypic assessment of a large number of mouse mutants generated by a gene-specific approach has not been described previously.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene selection based on expression.
Figure 2: Summary of phenotypes.
Figure 3: Clec1b deficient mice.

Similar content being viewed by others

References

  1. Clamp, M. et al. Distinguishing protein-coding and noncoding genes in the human genome. Proc. Natl. Acad. Sci. USA 104, 19428–19433 (2007).

    Article  CAS  Google Scholar 

  2. Austin, C.P. et al. The knockout mouse project. Nat. Genet. 36, 921–924 (2004).

    Article  CAS  Google Scholar 

  3. Friedel, R.H., Seisenberger, C., Kaloff, C. & Wurst, W. EUCOMM–the European conditional mouse mutagenesis program. Brief. Funct. Genomics Proteomics 6, 180–185 (2007).

    Article  CAS  Google Scholar 

  4. Mouse Genome Sequencing Consortium & Waterston, R.H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  CAS  Google Scholar 

  5. Zambrowicz, B.P. & Sands, A.T. Knockouts model the 100 best-selling drugs–will they model the next 100? Nat. Rev. Drug Discov. 2, 38–51 (2003).

    Article  CAS  Google Scholar 

  6. Clark, H.F. et al. The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. Genome Res. 13, 2265–2270 (2003).

    Article  CAS  Google Scholar 

  7. Zambrowicz, B.P. et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392, 608–611 (1998).

    Article  CAS  Google Scholar 

  8. Beltrandelrio, H. et al. Saturation Screening of the Druggable Mammalian Genome. in Model Organisms in Drug Discovery (eds. Carroll, P.M. & Fitzgerald, K.) 251–278, (John Wiley & Sons, Chichester, West Sussex, England, 2003).

  9. Brommage, R. Validation and calibration of DEXA body composition in mice. Am. J. Physiol. Endocrinol. Metab. 285, E454–E459 (2003).

    Article  CAS  Google Scholar 

  10. Scott, H.S. et al. Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. Nat. Genet. 27, 59–63 (2001).

    Article  CAS  Google Scholar 

  11. Guipponi, M., Antonarakis, S.E. & Scott, H.S. TMPRSS3, a type II transmembrane serine protease mutated in non-syndromic autosomal recessive deafness. Front. Biosci. 13, 1557–1567 (2008).

    Article  CAS  Google Scholar 

  12. Ben-Yosef, T. et al. Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum. Mol. Genet. 12, 2049–2061 (2003).

    Article  CAS  Google Scholar 

  13. Friedman, L.M., Dror, A.A. & Avraham, K.B. Mouse models to study inner ear development and hereditary hearing loss. Int. J. Dev. Biol. 51, 609–631 (2007).

    Article  CAS  Google Scholar 

  14. Fan, B. et al. Hepatocyte growth factor activator inhibitor-1 (HAI-1) is essential for the integrity of basement membranes in the developing placental labyrinth. Dev. Biol. 303, 222–230 (2007).

    Article  CAS  Google Scholar 

  15. Yan, M. & Plowman, G.D. Delta-like 4/Notch signaling and its therapeutic implications. Clin. Cancer Res. 13, 7243–7246 (2007).

    Article  CAS  Google Scholar 

  16. Wilson, L. et al. Random mutagenesis of proximal mouse chromosome 5 uncovers predominantly embryonic lethal mutations. Genome Res. 15, 1095–1105 (2005).

    Article  CAS  Google Scholar 

  17. Junge, H.J. et al. TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/β-catenin signaling. Cell 139, 299–311 (2009).

    Article  CAS  Google Scholar 

  18. Beigneux, A.P. et al. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab. 5, 279–291 (2007).

    Article  CAS  Google Scholar 

  19. Desai, U. et al. Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice. Proc. Natl. Acad. Sci. USA 104, 11766–11771 (2007).

    Article  CAS  Google Scholar 

  20. Savelieva, K.V. et al. Learning and memory impairment in Eph receptor A6 knockout mice. Neurosci. Lett. 438, 205–209 (2008).

    Article  CAS  Google Scholar 

  21. Holst, C.R. et al. Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival. PLoS ONE 2, e575 (2007).

    Article  Google Scholar 

  22. Colonna, M., Samaridis, J. & Angman, L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur. J. Immunol. 30, 697–704 (2000).

    Article  CAS  Google Scholar 

  23. Turner, M. et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298–302 (1995).

    Article  CAS  Google Scholar 

  24. Cheng, A.M. et al. Syk tyrosine kinase required for mouse viability and B-cell development. Nature 378, 303–306 (1995).

    Article  CAS  Google Scholar 

  25. Suzuki-Inoue, K. et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107, 542–549 (2006).

    Article  CAS  Google Scholar 

  26. May, F. et al. CLEC-2 is an essential platelet activating receptor in hemostasis and thrombosis. Blood 114, 3464–3472 (2009).

    Article  CAS  Google Scholar 

  27. Cordes, S.P. N-ethyl-N-nitrosourea mutagenesis: boarding the mouse mutant express. Microbiol. Mol. Biol. Rev. 69, 426–439 (2005).

    Article  CAS  Google Scholar 

  28. Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).

    Article  CAS  Google Scholar 

  29. The Eumorphia Consortium EMPReSS: standardized phenotype screens for functional annotation of the mouse genome. Nat. Genet. 37, 1155 (2005).

  30. Morgan, H. et al. EuroPhenome: a repository for high-throughput mouse phenotyping data. Nucleic Acids Res. 38, D577–D585 (2010).

    Article  CAS  Google Scholar 

  31. Zambrowicz, B.P., Holt, K.H., Walke, D.W., Kirkpatrick, L.L. & Eberhart, D.E. Generation of transgenic animals. in Target Validation in Drug Discovery (eds. Metcalf, B.W. & Dillon, S.) 3–26, (Academic Press, Burlington, Massachusetts, USA, 2007).

  32. Friddle, C.J. et al. High-throughput mouse knockouts provide a functional analysis of the genome. Cold Spring Harb. Symp. Quant. Biol. 68, 311–315 (2003).

    Article  CAS  Google Scholar 

  33. Pogorelov, V.M., Baker, K.B., Malbari, M.M., Lanthorn, T.H. & Savelieva, K.V. A standardized behavioral test battery to identify and validate targets for neuropsychiatric diseases and pain. in Experimental Animal Models in Neurobehavioral Research (eds. Kalueff, A.V. & LaPorte, J.L.) 17–45 (Laboratory of Clinical Science, Nat. Inst. of Mental Health, Bethesda, Maryland, USA, 2008).

  34. Brommage, R. et al. High-throughput screening of mouse knockout lines identifies true lean and obese phenotypes. Obesity (Silver Spring) 16, 2362–2367 (2008).

    Article  CAS  Google Scholar 

  35. Zambrowicz, B.P. et al. Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proc. Natl. Acad. Sci. USA 100, 14109–14114 (2003).

    Article  Google Scholar 

  36. Abuin, A., Hansen, G.M. & Zambrowicz, B. Gene trap mutagenesis. in Conditional Mutagenesis: An Approach to Disease Models (eds. Feil, R. & Metzger, D.) 129–147, (Springer, 2007).

  37. Wattler, S., Kelly, M. & Nehls, M. Construction of gene targeting vectors from lambda KOS genomic libraries. Biotechniques 26, 1150–1156, 1158, 1160 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Brennan, S. Bunting, L. Corson, P. Fielder, E. Filvaroff, D. French, J. Junutula, F. Peale, H. Phillips, M. Rohrer, H. Stern, J. Zha, R. Watts, B. Wolf and scientists in the Genentech Immunology Department for critical review of the knockout phenotypes and E. Bierwagen and D. Wan for the bioinformatics infrastructures used to track phenotypic calls. We thank J. Mitchell for analysis and plotting of histograms depicting phenotypic ranges. We also thank M. Tessier-Lavigne, F. Bazan, M. Kong-Beltran, J. Theunissen, S. Warming and Z. Zhang for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

F.J.d.S., T.T., A.P. and B.P.Z. designed the project, analyzed data and wrote the manuscript. F.M. and P.G. designed experiments and analyzed data. J.T. and N.G. contributed to the identification of murine orthologs. K.H.H. and N.G. contributed to the design and verification of targeting strategies. T.O., K.A.P., D.S.R., G.M.H., A.A., D.E.E., K.H.H. and B.P.Z. designed, performed and supervised the knockout generation and phenotype screen. T.T., L.L. and W.F. contributed to the statistical analysis and making the phenotype calls. J.T. and Y.L. implemented the database for public access. L.L. compiled the adult tissue calls. L.P. and W.Y. performed the embryonic in situ hybridization screen. W.Y.L., F.M., D.G. and M.S. performed the follow-up characterization of the Clec1b mutant line.

Corresponding author

Correspondence to Frederic J de Sauvage.

Ethics declarations

Competing interests

T.T., L.L., J.T., Y.L., W.Y.L., F.M., D.G., M.S., L.P., W.Y., W.F., N.G., P.G., A.P. and F.J.d.S. are employees of Genentech, a wholly owned subsidiary of Hoffmann-La Roche. T.O., K.A.P., D.S.R., G.M.H., A.A., D.E.E., K.H.H. and B.P.Z. are employees and shareholders of Lexicon Pharmaceuticals.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1,3,4,5,8 and Supplementary Figs. 1 and 2 (PDF 807 kb)

Supplementary Table 2

Gene symbol (human) (XLS 607 kb)

Supplementary Table 7

Calls from quantitative analysis (XLS 391 kb)

Supplementary Table 6

Calls from non-quantitative assays (XLS 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, T., Li, L., Tang, J. et al. A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol 28, 749–755 (2010). https://doi.org/10.1038/nbt.1644

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1644

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research