Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Directed differentiation of human embryonic stem cells toward chondrocytes

Abstract

We report a chemically defined, efficient, scalable and reproducible protocol for differentiation of human embryonic stem cells (hESCs) toward chondrocytes. HESCs are directed through intermediate developmental stages using substrates of known matrix proteins and chemically defined media supplemented with exogenous growth factors. Gene expression analysis suggests that the hESCs progress through primitive streak or mesendoderm to mesoderm, before differentiating into a chondrocytic culture comprising cell aggregates. At this final stage, 74% (HUES1 cells) and up to 95–97% (HUES7 and HUES8 cells) express the chondrogenic transcription factor SOX9. The cell aggregates also express cell surface CD44 and aggrecan and deposit a sulfated glycosaminoglycan and cartilage-specific collagen II matrix, but show very low or no expression of genes and proteins associated with nontarget cell types. Our protocol should facilitate studies of chondrocyte differentiation and of cell replacement therapies for cartilage repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of directed differentiation protocol in three stages.
Figure 2: Morphology of hESC cultures (HUES1) at different stages of the protocol.
Figure 3: Gene expression analysis of hESCs at different stages of the protocol.
Figure 4: Sulfated glycosaminoglycan accumulation during directed differentiation of hESCs (HUES1) to chondrocytes.
Figure 5: Immunofluorescence of SOX9 and collagen II.
Figure 6: Flow cytometry analyses of HUES1-derived cells at the end of stage 3 (day 14).

Similar content being viewed by others

References

  1. Goldring, M.B. & Goldring, S.R. Osteoarthritis. J. Cell. Physiol. 213, 626–634 (2007).

    Article  CAS  Google Scholar 

  2. Hardingham, T.E. Articular cartilage. in Oxford Textbook of Rheumatology (eds. Maddison, P.J., Isenberg, D.A., Woo, P. & Glass, D.N.) 325–334, (Oxford University Press, Oxford, UK, 2004).

    Google Scholar 

  3. Hardingham, T.E., Oldershaw, R.A. & Tew, S.R. Cartilage, SOX9 and Notch signals in chondrogenesis. J. Anat. 209, 469–480 (2006).

    Article  CAS  Google Scholar 

  4. Murry, C.E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  Google Scholar 

  5. De Sousa, P.A. et al. Clinically failed eggs as a source of normal human embryo stem cells. Stem Cell Res. 2, 188–197 (2009).

    Article  CAS  Google Scholar 

  6. Kawaguchi, J., Mee, P.J. & Smith, A.G. Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone 36, 758–769 (2005).

    Article  CAS  Google Scholar 

  7. Bigdeli, N. et al. Coculture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation. Stem Cells 27, 1812–1821 (2009).

    Article  Google Scholar 

  8. Boyd, N.L., Robbins, K.R., Dhara, S.K., West, F.D. & Stice, S.L. Human embryonic stem cell-derived mesoderm-like epithelium transitions to mesenchymal progenitor cells. Tissue Eng. Part A 15, 1897–1907 (2009).

    Article  CAS  Google Scholar 

  9. Hoben, G.M., Willard, V.P. & Athanasiou, K.A. Fibrochondrogenesis of hESCs: growth factor combinations and cocultures. Stem Cells Dev. 18, 283–292 (2009).

    Article  CAS  Google Scholar 

  10. Koay, E.J., Hoben, G.M. & Athanasiou, K.A. Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells 25, 2183–2190 (2007).

    Article  CAS  Google Scholar 

  11. Kramer, J. et al. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech. Dev. 92, 193–205 (2000).

    Article  CAS  Google Scholar 

  12. Lee, E.J. et al. Novel embryoid body-based method to derive mesenchymal stem cells from human embryonic stem cells. Tissue Eng. Part A 16, 705–715 (2009).

    Article  Google Scholar 

  13. Sui, Y., Clarke, T. & Khillan, J.S. Limb bud progenitor cells induce differentiation of pluripotent embryonic stem cells into chondrogenic lineage. Differentiation 71, 578–585 (2003).

    Article  CAS  Google Scholar 

  14. Vats, A. et al. Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng. 12, 1687–1697 (2006).

    Article  CAS  Google Scholar 

  15. Yang, Z., Sui, L., Toh, W.S., Lee, E.H. & Cao, T. Stage-dependent effect of TGF-β1 on chondrogenic differentiation of human embryonic stem cells. Stem Cells Dev. 18, 929–940 (2009).

    Article  CAS  Google Scholar 

  16. zur Nieden, N.I., Kempka, G., Rancourt, D.E. & Ahr, H.J. Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev. Biol. 5, 1 (2005).

    Article  Google Scholar 

  17. Lian, Q. et al. Derivation of clinically compliant MSCs from CD105+, CD24 differentiated human ESCs. Stem Cells 25, 425–436 (2007).

    Article  CAS  Google Scholar 

  18. Nakagawa, T., Lee, S.Y. & Reddi, A.H. Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor β1. Arthritis Rheum. 60, 3686–3692 (2009).

    Article  CAS  Google Scholar 

  19. D'Amour, K.A. et al. Production of pancreatic hormone–expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24, 1392–1401 (2006).

    Article  CAS  Google Scholar 

  20. Hay, D.C. et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells 26, 894–902 (2008).

    Article  CAS  Google Scholar 

  21. Laflamme, M.A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015–1024 (2007).

    Article  CAS  Google Scholar 

  22. Yan, Y. et al. Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23, 781–790 (2005).

    Article  CAS  Google Scholar 

  23. Nistor, G.I., Totoiu, M.O., Haque, N., Carpenter, M.K. & Keirstead, H.S. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49, 385–396 (2005).

    Article  Google Scholar 

  24. Winslow, B.B., Takimoto-Kimura, R. & Burke, A.C. Global patterning of the vertebrate mesoderm. Dev. Dyn. 236, 2371–2381 (2007).

    Article  CAS  Google Scholar 

  25. Gadue, P., Huber, T.L., Paddison, P.J. & Keller, G.M. Wnt and TGF-βbeta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc. Natl. Acad. Sci. USA 103, 16806–16811 (2006).

    Article  CAS  Google Scholar 

  26. Sumi, T., Tsuneyoshi, N., Nakatsuji, N. & Suemori, H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/βbeta-catenin, Activin/Nodal and BMP signaling. Development 135, 2969–2979 (2008).

    Article  CAS  Google Scholar 

  27. Tada, S. et al. Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132, 4363–4374 (2005).

    Article  CAS  Google Scholar 

  28. Izumi, N., Era, T., Akimaru, H., Yasunaga, M. & Nishikawa, S. Dissecting the molecular hierarchy for mesendoderm differentiation through a combination of embryonic stem cell culture and RNA interference. Stem Cells 25, 1664–1674 (2007).

    Article  CAS  Google Scholar 

  29. Wilkinson, D.G., Bhatt, S. & Herrmann, B.G. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343, 657–659 (1990).

    Article  CAS  Google Scholar 

  30. Ema, M., Takahashi, S. & Rossant, J. Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors. Blood 107, 111–117 (2006).

    Article  CAS  Google Scholar 

  31. Era, T. et al. Multiple mesoderm subsets give rise to endothelial cells, whereas hematopoietic cells are differentiated only from a restricted subset in embryonic stem cell differentiation culture. Stem Cells 26, 401–411 (2008).

    Article  CAS  Google Scholar 

  32. Faloon, P. et al. Basic fibroblast growth factor positively regulates hematopoietic development. Development 127, 1931–1941 (2000).

    CAS  PubMed  Google Scholar 

  33. Zhang, P. et al. Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood 111, 1933–1941 (2008).

    Article  CAS  Google Scholar 

  34. Hall, B.K. & Miyake, T. All for one and one for all: condensations and the initiation of skeletal development. Bioessays 22, 138–147 (2000).

    Article  CAS  Google Scholar 

  35. Akiyama, H., Chaboissier, M.C., Martin, J.F., Schedl, A. & de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16, 2813–2828 (2002).

    Article  CAS  Google Scholar 

  36. Lefebvre, V., Behringer, R.R. & de Crombrugghe, B. L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthritis Cartilage 9 Suppl. A, S69–S75 (2001).

    Article  Google Scholar 

  37. Lefebvre, V., Huang, W., Harley, V.R., Goodfellow, P.N. & de Crombrugghe, B. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro α1(II) collagen gene. Mol. Cell. Biol. 17, 2336–2346 (1997).

    Article  CAS  Google Scholar 

  38. Baxter, M.A. et al. Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Res. 3, 28–38 (2009).

    Article  CAS  Google Scholar 

  39. Eastham, A.M. et al. Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res. 67, 11254–11262 (2007).

    Article  CAS  Google Scholar 

  40. Kispert, A., Herrmann, B.G., Leptin, M. & Reuter, R. Homologs of the mouse Brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium, and Locusta. Genes Dev. 8, 2137–2150 (1994).

    Article  CAS  Google Scholar 

  41. Kubo, A. et al. Development of definitive endoderm from embryonic stem cells in culture. Development 131, 1651–1662 (2004).

    Article  CAS  Google Scholar 

  42. Takenaga, M., Fukumoto, M. & Hori, Y. Regulated nodal signaling promotes differentiation of the definitive endoderm and mesoderm from ES cells. J. Cell Sci. 120, 2078–2090 (2007).

    Article  CAS  Google Scholar 

  43. Betsholtz, C., Karlsson, L. & Lindahl, P. Developmental roles of platelet-derived growth factors. Bioessays 23, 494–507 (2001).

    Article  CAS  Google Scholar 

  44. Ducy, P. Cbfa1: a molecular switch in osteoblast biology. Dev. Dyn. 219, 461–471 (2000).

    Article  CAS  Google Scholar 

  45. Rosen, E.D. The transcriptional basis of adipocyte development. Prostaglandins Leukot. Essent. Fatty Acids 73, 31–34 (2005).

    Article  CAS  Google Scholar 

  46. Schweitzer, R. et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 128, 3855–3866 (2001).

    CAS  PubMed  Google Scholar 

  47. Pelttari, K. et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 54, 3254–3266 (2006).

    Article  CAS  Google Scholar 

  48. Coipeau, P. et al. Impaired differentiation potential of human trabecular bone mesenchymal stromal cells from elderly patients. Cytotherapy 11, 584–594 (2009).

    Article  CAS  Google Scholar 

  49. Murphy, J.M. et al. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum. 46, 704–713 (2002).

    Article  Google Scholar 

  50. Sachlos, E. & Auguste, D.T. Embryoid body morphology influences diffusive transport of inductive biochemicals: a strategy for stem cell differentiation. Biomaterials 29, 4471–4480 (2008).

    Article  CAS  Google Scholar 

  51. Izzi, L. et al. Foxh1 recruits Gsc to negatively regulate Mixl1 expression during early mouse development. EMBO J. 26, 3132–3143 (2007).

    Article  CAS  Google Scholar 

  52. McLean, A.B. et al. Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25, 29–38 (2007).

    Article  CAS  Google Scholar 

  53. Hatakeyama, Y., Tuan, R.S. & Shum, L. Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis. J. Cell. Biochem. 91, 1204–1217 (2004).

    Article  CAS  Google Scholar 

  54. Pacifici, M., Koyama, E. & Iwamoto, M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res. C Embryo Today 75, 237–248 (2005).

    Article  CAS  Google Scholar 

  55. Osafune, K. et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol. 26, 313–315 (2008).

    Article  CAS  Google Scholar 

  56. Tew, S.R. & Hardingham, T.E. Regulation of SOX9 mRNA in human articular chondrocytes involving p38 MAPK activation and mRNA stabilization. J. Biol. Chem. 281, 39471–39479 (2006).

    Article  CAS  Google Scholar 

  57. Grover, J. & Roughley, P.J. Expression of cell-surface proteoglycan mRNA by human articular chondrocytes. Biochem. J. 309, 963–968 (1995).

    Article  CAS  Google Scholar 

  58. Oldershaw, R.A. et al. Notch signaling through Jagged-1 is necessary to initiate chondrogenesis in human bone marrow stromal cells but must be switched off to complete chondrogenesis. Stem Cells 26, 666–674 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the North West Regional Development Agency; North West Embryonic Stem Cell Centre is also supported by the UK Medical Research Council and the UK National Institute for Health Research Biomedical Research Funding Scheme. We thank N. Hanley (University of Manchester) for the gift of human fetal cDNA.

Author information

Authors and Affiliations

Authors

Contributions

R.A.O., D.R.B., T.E.H. and S.J.K. were responsible for study concept and design, analysis and interpretation of data and preparation of the manuscript. R.A.O., M.A.B., E.T.L., N.B., F.S. and L.M.G. were responsible for the acquisition of data.

Corresponding author

Correspondence to Susan J Kimber.

Ethics declarations

Competing interests

R.A.O., D.R.B., T.E.H. and S.J.K. are named inventors on UK Intellectual Property Office patent applications GB 1012495.6 (filed 26 July 2010) and GB 1012559.9 (filed 27 July 2010).

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1,2 and Supplementary Figs. 1–8 (PDF 3256 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oldershaw, R., Baxter, M., Lowe, E. et al. Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol 28, 1187–1194 (2010). https://doi.org/10.1038/nbt.1683

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1683

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research