Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Strangled at birth? Forest biotech and the Convention on Biological Diversity

Against the Cartagena Protocol and widespread scientific support for a case-by-case approach to regulation, the Convention on Biological Diversity has become a platform for imposing broad restrictions on research and development of all types of transgenic trees.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Kalaitzandonakes, N. Regulation 29, 18–25 (2006).

    Google Scholar 

  2. Jaffe, G. J. Public Aff. 5, 299–311 (2005).

    Article  Google Scholar 

  3. Watanabe, K.N. et al. Nat. Biotechnol. 22, 1207–1208 (2004).

    Article  CAS  Google Scholar 

  4. Kinderlerer, J. Collection Biosafety Rev. 4, 12–65 (2008).

    Google Scholar 

  5. Convention on Biological Diversity. Parties to Convention on Biodiversity. <http://www.cbd.int/convention/parties/list/> (2009).

  6. International Service for the Acquisition of Agri-biotech Applications. Global Status of Commercialized Biotech/GM Crops: 2007 <http://www.isaaa.org/Resources/Publications/briefs/37/executivesummary/default.html>

  7. Petermann, A. The International Status of Genetically Modified Trees (7/25/05). <http://www.worldagroforestrycentre.org/downloads/International%20Status%20of%20GE%20Trees.pdf>

  8. Schwartz, J. N. Y. Univ. Environ. Law J. 14, 421–480 (2006).

    Google Scholar 

  9. Grattapaglia, D. & Kirst, M. New Phytol. 179, 911–929 (2008).

    Article  CAS  Google Scholar 

  10. Boerjan, W. Curr. Opin. Biotechnol. 16, 159–166 (2005).

    Article  CAS  Google Scholar 

  11. Tuskan, G.A. et al. Science 313, 1596–1604 (2006).

    Article  CAS  Google Scholar 

  12. Merkle, S.A. et al. Tree Genet. Genomes 3, 111–118 (2007).

    Article  Google Scholar 

  13. Doty, S.L. et al. Proc. Natl. Acad. Sci. USA 104, 16816–16821 (2007).

    Article  CAS  Google Scholar 

  14. Brunner, A.M. et al. Tree Genet. Genomes 3, 75–100 (2007).

    Article  Google Scholar 

  15. Arent Fox & International Environmental Resources. Biosafety Regulation Sourcebook. <http://www.arentfox.com/modelbiosafetyact.pdf> (2006).

  16. Institute of Science in Society. GM Trees Lost in China's Forests. <http://www.i-sis.org.uk/GMTGL.php> (2005).

  17. Humphreys, D. et al. Biotechnology in the forest? Policy options on research on GM trees. <http://www.genet-info.org/fileadmin/files/genet/GE_Trees/2005_EFI_GETrees.pdf> (2005).

    Google Scholar 

  18. Lang, C. The Convention on Biodiversity, GM trees and paper consumption. World Rainforest Movement Bulletin, January 2008. <http://www.wrm.org.uy/bulletin/126/viewpoint.html#Convention>

    Google Scholar 

  19. Subsidiary Body On Scientific, Technical And Technological Advice. The Potential Environmental, Cultural and Socio-economic Impacts of Genetically Modified Trees. <http://www.cbd.int/doc/meetings/sbstta/sbstta-13/information/sbstta-13-inf-06-en.pdf> (2008).

  20. Global Justice Ecology Project. GJEP/ STOP GE Trees Campaign Interventions at UN Biodiversity Convention. <http://www.globaljusticeecology.org/stopgetrees_news.php?ID=132> (2008).

  21. Convention on Biological Diversity Alliance. No GE Trees, No Case By Case. http://www.cbdalliance.org/sbstta-13/21_4.pdf (2008).

  22. Hoenicka, H. & Fladung, M. Trees Struct. Funct. 20, 131–144 (2006).

    Article  Google Scholar 

  23. Richardson, D.M. & Petit, R.J. in Landscapes, Genomics and Transgenic Conifers (ed. Williams, C.G.) 169–188 (Springer Netherlands, 2006).

    Book  Google Scholar 

  24. United States Department of Agriculture. Policy statement regarding releases of perennials under notification. <http://www.aphis.usda.gov/brs/pdf/BRS_Perennials_Statement.pdf> (2008).

  25. Morris, J. Toxicology 181–182, 127–130 (2002).

    Article  Google Scholar 

  26. Marchant, G.E. & Mossman, K.L. Arbitrary and Capricious: the Precautionary Principle in the European Union Courts. <http://www.policynetwork.net/uploaded/pdf/Arbitrary-web.pdf> (2005).

    Google Scholar 

  27. Conko, G. Transgenic Res. 12, 639–647 (2003).

    Article  CAS  Google Scholar 

  28. Strauss, S. et al. J. For. 99, 4–7 (2001).

    Google Scholar 

  29. Johnston, S. et al. Internationally Funded Training in Biosafety And Biotechnology - Is It Bridging the Biotech Divide? <http://www.ias.unu.edu/sub_page.aspx?catID=111&ddlID=673> (2008)

    Google Scholar 

  30. De Greef, W. Nat. Biotechnol. 22, 811–812 (2004).

    Article  CAS  Google Scholar 

  31. Frankenhuyzen, K.v. & Beardmore, T. Can. J. For. Res. 34, 1163–1180 (2004).

    Article  Google Scholar 

  32. Strauss, S. et al. Nat. Biotechnol. 17, 1145 (1999).

    Article  CAS  Google Scholar 

  33. Food and Agriculture Organization of the United Nations. Preliminary Review of Biotechnology in Forestry, Including Genetic Modification (Forest Resources Division FAO, Rome; 2004).

  34. Information Systems for Biotechnology. Field Trial Database. <http://www.isb.vt.edu/cfdocs/fieldtests1.cfm> (2008).

  35. United Nations Environment Program. The Potential Environmental, Cultural and Socioeconomic Impacts of Genetically Modified Trees. UNEP/CBD/SBSTTA/13/1 <http://www.cbd.int/doc/meetings/sbstta/sbstta-13/information/sbstta-13-inf-06-en.pdf> (2008).

  36. Strauss, S.H. et al. J. For. 99, 4–7 (2001a).

    Google Scholar 

  37. Robischon, M. Field Trials with Transgenic Trees - State of the Art and Developments. (Springer, Berlin Heindelberg, 2006).

    Book  Google Scholar 

  38. Safety, G.M.O. Deliberate Release of Genetically Modified Trees. <http://www.gmo-safety.eu/en/wood/poplar/54.docu.html> (2007).

    Google Scholar 

  39. Farnum, P. et al. Tree Genet. Genomes 3, 119–133 (2007).

    Article  Google Scholar 

  40. Cheng, K.C. et al. J. Agric. Food Chem. 56, 3057–3067 (2008).

    Article  CAS  Google Scholar 

  41. Batista, R. et al. Proc. Nat. Acad. Sci. USA 105, 3640–3645 (2008).

    Article  CAS  Google Scholar 

  42. Baudo, M.M. et al. Plant Biotechnol. 4, 369–380 (2006).

    Article  CAS  Google Scholar 

  43. Catchpole, G.S. et al. Proc. Natl. Acad. Sci. USA 102, 14458–14462 (2005).

    Article  CAS  Google Scholar 

  44. Morgante, M. et al. Nat. Genet. 37, 997–1002 (2005).

    Article  CAS  Google Scholar 

  45. Ramessar, K. et al. Transgenic Res. 16, 261–280 (2007).

    Article  CAS  Google Scholar 

  46. Martínez, J.L. Science 321, 365–367 (2008).

    Article  Google Scholar 

  47. Slavov, G.T. et al. Gene Flow in Forest Trees: Gene Migration Patterns and Landscape Modelling of Transgene Dispersal in Hybrid Poplar. (CABI Publishing, Cambridge, MA, USA; 2004).

    Google Scholar 

  48. Smouse, P.E. et al. Tree Genet. Genomes 3, 141–152 (2007).

    Article  Google Scholar 

  49. Linacre, N.A. & Adesb, P.K. Ecol. Modell. 179, 247–257 (2004).

    Article  Google Scholar 

  50. El-Lakany, M.H. Unasylva 217, 45–47 (2004).

    Google Scholar 

  51. Strauss, S.H. Science 300, 61–62 (2003).

    Article  CAS  Google Scholar 

  52. COP-CBD. Forest Biological Diversity: Implementation of the Programme of Work. COP8 Decision VIII/19 <https://www.cbd.int/decision/cop/?id=11033> (2008).

  53. COP-CBD. Report of the Subsidiary Body on Scientific, Technical and Technological Advice on the Work of its Thirteenth Meeting. UNEP/CBD/COP/9/L.33: CBD 2008 <http://www.cbd.int/doc/meetings/cop/cop-09/official/cop-09-03-en.pdf> (2008).

  54. Global Industry Coalition. Compilation of Environmental Risk Assessment Guidance: Transgenic Trees. <http://www.croplife.org/library/documents/Biotech/Biosafety%20Protocol/risk%20assessment/FINAL%20compilation%20of%20ERA%20for%20transgenic%20trees.doc> (2007)

  55. Brunner, A.M., Busov, V.B. & Strauss, S.H. Trends Plant Sci. 9, 49–56 (2004).

    Article  CAS  Google Scholar 

  56. Yin, X. & Struik, P. New Phytol. 179, 629–642 (2008).

    Article  CAS  Google Scholar 

  57. Campos, H. et al. Field Crops Res. 90, 19–34 (2004).

    Article  Google Scholar 

  58. Laurentius, A.C. et al. Science 320, 880–881 (2008).

    Article  Google Scholar 

  59. Hu, W. et al. Nat. Biotechnol. 17, 808–812 (1999).

    Article  CAS  Google Scholar 

  60. Wei, H. et al. Mol. Breed. 19, 69–85 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Julian Kinderlerer, Val Giddings, Piet van der Meer, Rachel Lattimore and Leslie Pearson for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

S.H.S. has obtained grant funds from forestry and biotechnology companies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strauss, S., Tan, H., Boerjan, W. et al. Strangled at birth? Forest biotech and the Convention on Biological Diversity. Nat Biotechnol 27, 519–527 (2009). https://doi.org/10.1038/nbt0609-519

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0609-519

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing