Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrostatic readout of DNA microarrays with charged microspheres

Abstract

DNA microarrays are used for gene-expression profiling, single-nucleotide polymorphism detection and disease diagnosis1,2,3. A persistent challenge in this area is the lack of microarray screening technology suitable for integration into routine clinical care4,5. Here, we describe a method for sensitive and label-free electrostatic readout of DNA or RNA hybridization on microarrays. The electrostatic properties of the microarray are measured from the position and motion of charged microspheres randomly dispersed over the surface. We demonstrate nondestructive electrostatic imaging with 10-μm lateral resolution over centimeter-length scales, which is four-orders of magnitude larger than that achievable with conventional scanning electrostatic force microscopy. Changes in surface charge density as a result of specific hybridization can be detected and quantified with 50-pM sensitivity, single base-pair mismatch selectivity and in the presence of complex background. Because the naked eye is sufficient to read out hybridization, this approach may facilitate broad application of multiplexed assays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrostatic microarray readout using microparticle probes.
Figure 2: Electrostatic response to DNA surface density.
Figure 3: Simplified readout using charged microparticles.
Figure 4: Label-free expression profiling with primary mRNA.

Similar content being viewed by others

References

  1. McGuire, A., Cho, M., McGuire, S. & Caulfield, T. Medicine: the future of personal genomics. Science 317, 1687 (2007).

    Article  CAS  Google Scholar 

  2. Cobb, J.P. et al. Application of genome-wide expression analysis to human health and disease. Proc. Natl. Acad. Sci. USA 102, 4801–4806 (2005).

    Article  CAS  Google Scholar 

  3. Barken, K., Haagensen, J.J. & Tolker-Nielsen, T. Advances in nucleic acid-based diagnostics of bacterial infections. Clin. Chim. Acta 384, 1–11 (2007).

    Article  CAS  Google Scholar 

  4. Aitman, T.J. Science, medicine, and the future: DNA microarrays in medical practice. Br. Med. J. 323, 611–615 (2001).

    Article  CAS  Google Scholar 

  5. Abdullah-Sayani, A., Bueno-de-Mesquita, J.M. & van de Vijver, Marc J. Technology insight: tuning into the genetic orchestra using microarrays—limitations of DNA microarrays in clinical practice. Nat. Clin. Pract. Oncol. 3, 501–516 (2006).

    Article  CAS  Google Scholar 

  6. Global Health Diagnostics Forum. The right tools can save lives. Nature 444, 681 (2006).

  7. Mabey, D., Peeling, R.W., Ustianowski, A. & Perkins, M.D. Diagnostics for the developing world. Nat. Rev. Microbiol. 2, 231–240 (2004).

    Article  CAS  Google Scholar 

  8. Steinmetz, L.M. & Davis, R.W. Maximizing the potential of functional genomics. Nat. Rev. Genet. 5, 190–201 (2004).

    Article  CAS  Google Scholar 

  9. Fang, S., Lee, H.J., Wark, A.W. & Corn, R.M. Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J. Am. Chem. Soc. 128, 14044–14046 (2006).

    Article  CAS  Google Scholar 

  10. Cooper, M.A. Optical biosensors in drug discovery. Nat. Rev. Drug Discov. 1, 515–528 (2002).

    Article  CAS  Google Scholar 

  11. Fan, C., Plaxco, K.W. & Heeger, A.J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc. Natl. Acad. Sci. USA 100, 9134–9137 (2003).

    Article  CAS  Google Scholar 

  12. Drummond, T.G., Hill, M.G. & Barton, J.K. Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192–1199 (2003).

    Article  CAS  Google Scholar 

  13. Nilsson, K.P. & Inganas, O. Chip and solution detection of DNA hybridization using a luminescent zwitterionic polythiophene derivative. Nat. Mater. 2, 419–424 (2003).

    Article  CAS  Google Scholar 

  14. Zhou, D., Sinniah, K., Abell, C. & Rayment, T. Label-free detection of DNA hybridization at the nanoscale: a highly sensitive and selective approach using atomic-force microscopy. Angew. Chem. Int. Ed. 42, 4934–4937 (2003).

    Article  CAS  Google Scholar 

  15. Sinensky, A.K. & Belcher, A.M. Label-free and high-resolution protein//DNA nanoarray analysis using Kelvin probe force microscopy. Nat. Nanotechnol. 2, 653–659 (2007).

    Article  CAS  Google Scholar 

  16. Zhang, J. et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat. Nanotechnol. 1, 214–220 (2006).

    Article  CAS  Google Scholar 

  17. Hahm, J.-i. & Lieber, C.M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4, 51–54 (2004).

    Article  CAS  Google Scholar 

  18. Fritz, J., Cooper, E., Gaudet, S., Sorger, P.K. & Manalis, S.R. Electronic detection of DNA by its intrinsic molecular charge. Proc. Natl. Acad. Sci. USA 99, 14142 (2002).

    Article  CAS  Google Scholar 

  19. Hood, L., Heath, J., Phelps, M. & Lin, B. Systems biology and new technologies enable predictive and preventative medicine. Science 306, 640–643 (2004).

    Article  CAS  Google Scholar 

  20. Drummond, T.G., Hill, M.G. & Barton, J.K. Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192–1199 (2003).

    Article  CAS  Google Scholar 

  21. 't Hoen, P.C., deKort, F., vanOmmen, G.J.B. & denDunnen, J. Fluorescent labelling of cRNA for microarray applications. Nucleic Acids Res. 31, e20 (2003).

    Article  Google Scholar 

  22. Dove, A. Business office feature: from morgan to microarrays: gene mapping hits the big time. Science 318, 473–478 (2007).

    Article  Google Scholar 

  23. Butt, H.J., Capella, B. & Kappl, M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152 (2005).

    Article  CAS  Google Scholar 

  24. Despont, M., Drechsler, U., Yu, R., Pogge, H.B. & Vettiger, P. Wafer-scale microdevice transfer/interconnect: its application in an AFM-based data-storage system. J. Mem. S. 13, 895–901 (2004).

    Article  CAS  Google Scholar 

  25. Russel, W.B., Saville, D.A. & Schowalter, W.R. Electrostatics. in Colloidal Dispersions (ed. Batchelor, G. K.) (Cambridge University Press, Cambridge, UK, 1991).

    Google Scholar 

  26. Schilling, J., Sengupta, K., Goennenwein, S., Bausch, A.R. & Sackmann, E. Absolute interfacial distance measurements by dual-wavelength reflection interference contrast microscopy. Phys. Rev. E. 69, 021901 (2004).

    Article  Google Scholar 

  27. Clack, N.G. & Groves, J.T. Many-particle tracking with nanometer resolution in three dimensions by reflection interference contrast microscopy. Langmuir 21, 6430–6435 (2005).

    Article  CAS  Google Scholar 

  28. Peterson, A., Heaton, R. & Georgiadis, R. The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 29, 5163–5168 (2001).

    Article  CAS  Google Scholar 

  29. Heyries, K.A., Marquette, C.A. & Blum, L.J. Straightforward protein immobilization on Sylgard 184 PDMS microarray surface. Langmuir 23, 4523–4527 (2007).

    Article  CAS  Google Scholar 

  30. Yu, A.A. et al. High resolution printing of DNA feature on poly(methyl methacrylate) substrates using supramolecular nano-stamping. J. Am. Chem. Soc. 127, 16774–16775 (2005).

    Article  CAS  Google Scholar 

  31. Salaita, K., Wang, Y.H. & Mirkin, C.A. Applications of dip-pen nanolithography. Nat. Nano. 2, 145–155 (2007).

    Article  CAS  Google Scholar 

  32. MacBeath, G. Protein microarrays and proteomics. Nat. Genet. 32, 526–532 (2002).

    Article  CAS  Google Scholar 

  33. Winssinger, N., Pianowski, Z. & Debaene, F. Probing biology with small molecule microarrays (SMM). Top. Curr. Chem. 278, 311–342 (2007).

    Article  CAS  Google Scholar 

  34. de Gans, B.-J. & Schubert, U.S. Inkjet printing of polymer micro-arrays and libraries: instrumentation, requirements, and perspective. Macromol. Rapid Commun. 24, 659–666 (2003).

    Article  CAS  Google Scholar 

  35. Cassell, A.M., Verma, S., Delzeit, L., Meyyappan, M. & Han, J. Combinatorial optimization of heterogeneous catalysts used in the growth of carbon nanotubes. Langmuir 17, 260–264 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lance Kizer and the UC Berkeley Functional Genomics Laboratory for assistance in generating microarrays. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC03-76SF00098. N.G.C. also received partial support from the National Science Foundation through The Center on Polymer Interfaces and Macromolecular Assemblies.

Author information

Authors and Affiliations

Authors

Contributions

N.G.C. and K.S. designed and implemented all experiments. N.G.C., K.S. and J.T.G. conceived of ideas and wrote the paper.

Corresponding author

Correspondence to Jay T Groves.

Supplementary information

Supplementary Text and Figures

Figures 1–4, Table 1, Methods, Note (PDF 948 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clack, N., Salaita, K. & Groves, J. Electrostatic readout of DNA microarrays with charged microspheres. Nat Biotechnol 26, 825–830 (2008). https://doi.org/10.1038/nbt1416

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1416

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing