Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network

Abstract

Significant insight about biological networks arises from the study of network motifs—overly abundant network subgraphs1,2—but such wiring patterns do not specify when and how potential routes within a cellular network are used. To address this limitation, we introduce activity motifs, which capture patterns in the dynamic use of a network. Using this framework to analyze transcription in Saccharomyces cerevisiae metabolism, we find that cells use different timing activity motifs to optimize transcription timing in response to changing conditions: forward activation to produce metabolic compounds efficiently, backward shutoff to rapidly stop production of a detrimental product and synchronized activation for co-production of metabolites required for the same reaction. Measuring protein abundance over a time course reveals that mRNA timing motifs also occur at the protein level. Timing motifs significantly overlap with binding activity motifs, where genes in a linear chain have ordered binding affinity to a transcription factor, suggesting a mechanism for ordered transcription. Finely timed transcriptional regulation is therefore abundant in yeast metabolism, optimizing the organism's adaptation to new environmental conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activity motifs overlay functional data over known network wiring structure.
Figure 2: Timing activity motifs across conditions.
Figure 3: Multiple activity motifs overlay the pentose phosphate pathway and glycerol biosynthesis.
Figure 4: Functional characterization of activity motifs.
Figure 5: Protein timing motifs in response to DTT.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Shen-Orr, S.S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002).

    Article  CAS  Google Scholar 

  2. Milo, R. et al. Superfamilies of evolved and designed networks. Science 303, 1538–1542 (2004).

    Article  CAS  Google Scholar 

  3. Ozier, O., Amin, N. & Ideker, T. Global architecture of genetic interactions on the protein network. Nat. Biotechnol. 21, 490–491 (2003).

    Article  CAS  Google Scholar 

  4. Goh, K.I., Oh, E., Jeong, H., Kahng, B. & Kim, D. Classification of scale-free networks. Proc. Natl. Acad. Sci. USA 99, 12583–12588 (2002).

    Article  CAS  Google Scholar 

  5. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N. & Barabasi, A.L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).

    Article  CAS  Google Scholar 

  6. Belle, A., Tanay, A., Bitincka, L., Shamir, R. & O'Shea, E.K. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl. Acad. Sci. USA 103, 13004–13009 (2006).

    Article  CAS  Google Scholar 

  7. Rossell, S. et al. Unraveling the complexity of flux regulation: a new method demonstrated for nutrient starvation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 103, 2166–2171 (2006).

    Article  CAS  Google Scholar 

  8. Daran-Lapujade, P. et al. The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc. Natl. Acad. Sci. USA 104, 15753–15758 (2007).

    Article  CAS  Google Scholar 

  9. Ihmels, J., Levy, R. & Barkai, N. Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat. Biotechnol. 22, 86–92 (2004).

    Article  CAS  Google Scholar 

  10. Kharchenko, P., Church, G.M. & Vitkup, D. Expression dynamics of a cellular metabolic network. Mol. Syst. Biol. 1, 2005 0016 (2005).

    Article  Google Scholar 

  11. Zaslaver, A. et al. Just-in-time transcription program in metabolic pathways. Nat. Genet. 36, 486–491 (2004).

    Article  CAS  Google Scholar 

  12. Zhang, L.V. et al. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol. 4, 6 (2005).

    Article  CAS  Google Scholar 

  13. Forster, J., Famili, I., Fu, P., Palsson, B.O. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253 (2003).

    Article  CAS  Google Scholar 

  14. Bar-Joseph, Z. Analyzing time series gene expression data. Bioinformatics 20, 2493–2503 (2004).

    Article  CAS  Google Scholar 

  15. Chechik, G. & Koller, D. Timing properties of gene expression responses to environmental changes. J. Cell Biol. (in press).

  16. Lai, L.C., Kosorukoff, A.L., Burke, P.V. & Kwast, K.E. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media. Mol. Cell. Biol. 25, 4075–4091 (2005).

    Article  CAS  Google Scholar 

  17. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).

    Article  CAS  Google Scholar 

  18. Gasch, A.P. et al. Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol. Biol. Cell 12, 2987–3003 (2001).

    Article  CAS  Google Scholar 

  19. Ralser, M. et al. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J. Biol. 6, 10 (2007).

    Article  Google Scholar 

  20. Grant, C.M. Metabolic reconfiguration is a regulated response to oxidative stress. J. Biol. 7, 1 (2008).

    Article  Google Scholar 

  21. Parrou, J.L., Teste, M.A. & Francois, J. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143, 1891–1900 (1997).

    Article  CAS  Google Scholar 

  22. Chin, C.S., Chubukov, V., Jolly, E.R., DeRisi, J. & Li, H. Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways. PLoS Biol. 6, e146 (2008).

    Article  Google Scholar 

  23. Bilu, Y., Shlomi, T., Barkai, N. & Ruppin, E. Conservation of expression and sequence of metabolic genes is reflected by activity across metabolic states. PLoS Comput. Biol. 2, e106 (2006).

    Article  Google Scholar 

  24. Kauffman, K.J., Prakash, P. & Edwards, J.S. Advances in flux balance analysis. Curr. Opin. Biotechnol. 14, 491–496 (2003).

    Article  CAS  Google Scholar 

  25. Wapinski, I., Pfeffer, A., Friedman, N. & Regev, A. Natural history and evolutionary principles of gene duplication in fungi. Nature 449, 54–61 (2007).

    Article  CAS  Google Scholar 

  26. Kalir, S. et al. Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292, 2080–2083 (2001).

    Article  CAS  Google Scholar 

  27. Ronen, M., Rosenberg, R., Shraiman, B.I. & Alon, U. Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci. USA 99, 10555–10560 (2002).

    Article  CAS  Google Scholar 

  28. Tanay, A. Extensive low-affinity transcriptional interactions in the yeast genome. Genome Res. 16, 962–972 (2006).

    Article  CAS  Google Scholar 

  29. Tanay, A., Gat-Viks, I. & Shamir, R. A global view of the selection forces in the evolution of yeast cis-regulation. Genome Res. 14, 829–834 (2004).

    Article  CAS  Google Scholar 

  30. Raijman, D., Shamir, R. & Tanay, A. Evolution and selection in yeast promoters: analyzing the combined effect of diverse transcription factor binding sites. PLoS Comput. Biol. 4, e7 (2008).

    Article  Google Scholar 

  31. Lam, F.H., Steger, D.J. & O'Shea, E.K. Chromatin decouples promoter threshold from dynamic range. Nature 453, 246–250 (2008).

    Article  CAS  Google Scholar 

  32. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004).

    Article  CAS  Google Scholar 

  33. Workman, C.T. et al. A systems approach to mapping DNA damage response pathways. Science 312, 1054–1059 (2006).

    Article  CAS  Google Scholar 

  34. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

  35. Bar-Even, A. et al. Noise in protein expression scales with natural protein abundance. Nat. Genet. 38, 636–643 (2006).

    Article  CAS  Google Scholar 

  36. Keene, J.D. RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8, 533–543 (2007).

    Article  CAS  Google Scholar 

  37. Han, J.D. et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 88–93 (2004).

    Article  CAS  Google Scholar 

  38. Jensen, L.J., Jensen, T.S., de Lichtenberg, U., Brunak, S. & Bork, P. Co-evolution of transcriptional and post-translational cell-cycle regulation. Nature 443, 594–597 (2006).

    Article  CAS  Google Scholar 

  39. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  CAS  Google Scholar 

  40. O'Rourke, S.M. & Herskowitz, I. A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1 branch. Mol. Cell. Biol. 22, 4739–4749 (2002).

    Article  CAS  Google Scholar 

  41. Causton, H.C. et al. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12, 323–337 (2001).

    Article  CAS  Google Scholar 

  42. Kitagawa, E., Akama, K. & Iwahashi, H. Effects of iodine on global gene expression in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 69, 2285–2293 (2005).

    Article  CAS  Google Scholar 

  43. Zakrzewska, A., Boorsma, A., Brul, S., Hellingwerf, K.J. & Klis, F.M. Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan. Eukaryot. Cell 4, 703–715 (2005).

    Article  CAS  Google Scholar 

  44. Mercier, G. et al. A haploid-specific transcriptional response to irradiation in Saccharomyces cerevisiae. Nucleic Acids Res. 33, 6635–6643 (2005).

    Article  CAS  Google Scholar 

  45. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  46. Newman, J.R. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

    Article  CAS  Google Scholar 

  47. Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work was supported by the National Science Foundation under grant BDI-0345474. A.R. was supported by a Career award at the Scientific Interface from the Burroughs Wellcome Fund and by NIGMS. J.W. was supported by the Howard Hughes Medical Institute. The authors thank Trey Ideker, Dwight Kuo, Craig Mak and Eran Segal for assistance in early stages of this project, and Dana Pe'er and especially Eric Lander for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

G.C. and D.K. conceived of the study and developed the method. A.R. participated in the method development and designed and executed the biological analysis. O.R. designed and executed the microarray experiments. The protein abundance experiments were designed by E.O., J.W., G.C. and D.K., executed by E.O. and analyzed by G.C. and D.K. G.C., D.K. and A.R. wrote the manuscript and developed the figures.

Corresponding authors

Correspondence to Aviv Regev or Daphne Koller.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–6 (PDF 1263 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chechik, G., Oh, E., Rando, O. et al. Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network. Nat Biotechnol 26, 1251–1259 (2008). https://doi.org/10.1038/nbt.1499

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1499

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing