Article abstract

Nature Biotechnology 25, 1007 - 1014 (2007)
Published online: 19 August 2007 | doi:10.1038/nbt1325

Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42

Xiao Hua Chen1, Alexandra Koumoutsi1, Romy Scholz1, Andreas Eisenreich1, Kathrin Schneider2, Isabelle Heinemeyer3, Burkhard Morgenstern3, Björn Voss4, Wolfgang R Hess4, Oleg Reva5, Helmut Junge6, Birgit Voigt7, Peter R Jungblut8, Joachim Vater2, Roderich Süssmuth2, Heiko Liesegang9, Axel Strittmatter9, Gerhard Gottschalk9 & Rainer Borriss1

This article is distributed under the terms of the Creative Commons Attribution-Non-Commercial-Share Alike license (, which permits distribution, and reproduction in any medium, provided the original author and source are credited. This license does not permit commercial exploitation, and derivative works must be licensed under the same or similar license.

Bacillus amyloliquefaciens FZB42 is a Gram-positive, plant-associated bacterium, which stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. Its 3,918-kb genome, containing an estimated 3,693 protein-coding sequences, lacks extended phage insertions, which occur ubiquitously in the closely related Bacillus subtilis 168 genome. The B. amyloliquefaciens FZB42 genome reveals an unexpected potential to produce secondary metabolites, including the polyketides bacillaene and difficidin. More than 8.5% of the genome is devoted to synthesizing antibiotics and siderophores by pathways not involving ribosomes. Besides five gene clusters, known from B. subtilis to mediate nonribosomal synthesis of secondary metabolites, we identified four giant gene clusters absent in B. subtilis 168. The pks2 gene cluster encodes the components to synthesize the macrolactin core skeleton.

  1. Bakteriengenetik, Institut für Biologie, Humboldt Universität, Chausseestr. 117, D-10115 Berlin, Germany.
  2. Institut für Chemie/Biologische Chemie, Technische Universität Berlin, Franklinstr. 29, D-10587 Berlin, Germany.
  3. Bioinformatik, Institut für Mikrobiologie und Genetik, Georg-August Universität, Goldschmidtstr. 1, D-37073 Göttingen, Germany.
  4. Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany.
  5. Bioinformatics and Computational Biology Unit, Biochemistry Department, University of Pretoria, Lynnwood Road, Hillcrest, 0002 Pretoria, South Africa.
  6. Abitep GmbH, Glienicker Weg 185, D-12489 Berlin, Germany.
  7. Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt Universität, Jahnstr. 15, D-17487 Greifswald, Germany.
  8. MPI Infektionsbiologie, Charitéplatz 1, D-10117 Berlin, Germany.
  9. Institut für Mikrobiologie und Genetik, Laboratorium für Genomanalyse, Georg-August Universität, Grisebachstr. 8, D-37077 Göttingen, Germany.

Correspondence to: Rainer Borriss1 e-mail:


These links to content published by NPG are automatically generated.


Carbon source regulation of antibiotic production

The Journal of Antibiotics Review

Biological control of soil-borne pathogens by fluorescent pseudomonads

Nature Reviews Microbiology Review (01 Apr 2005)