Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice

This article has been updated

Abstract

Mice that could be highly repopulated with human hepatocytes would have many potential uses in drug development and research applications. The best available model of liver humanization, the uroplasminogen-activator transgenic model, has major practical limitations. To provide a broadly useful hepatic xenorepopulation system, we generated severely immunodeficient, fumarylacetoacetate hydrolase (Fah)-deficient mice. After pretreatment with a urokinase-expressing adenovirus, these animals could be highly engrafted (up to 90%) with human hepatocytes from multiple sources, including liver biopsies. Furthermore, human cells could be serially transplanted from primary donors and repopulate the liver for at least four sequential rounds. The expanded cells displayed typical human drug metabolism. This system provides a robust platform to produce high-quality human hepatocytes for tissue culture. It may also be useful for testing the toxicity of drug metabolites and for evaluating pathogens dependent on human liver cells for replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engraftment and repopulation of Fah−/−/Rag2−/−/Il2rg−/− mice with human hepatocytes.
Figure 2: Histology and immunohistochemistry of chimeric mice.
Figure 3: Human gene and protein expression in chimeric mice.
Figure 4: Serial transplantation of human hepatocytes.
Figure 5: Absence of cell fusion.
Figure 6: Drug metabolism.

Similar content being viewed by others

Change history

  • 11 March 2008

    In the HTML version of this article initially published, the statement that the authors had no competing financial interests was incorrect. The authors declare competing financial interests and the details have now been posted online. The error has been corrected in the HTML version of the article.

References

  1. Brandon, E.F., Raap, C.D., Meijerman, I., Beijnen, J.H. & Schellens, J.H. An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol. Appl. Pharmacol. 189, 233–246 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Gomez-Lechon, M.J., Donato, M.T., Castell, J.V. & Jover, R. Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr. Drug Metab. 4, 292–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Runge, D., Michalopoulos, G.K., Strom, S.C. & Runge, D.M. Recent advances in human hepatocyte culture systems. Biochem. Biophys. Res. Commun. 274, 1–3 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Cascio, S.M. Novel strategies for immortalization of human hepatocytes. Artif. Organs 25, 529–538 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Dandri, M. et al. Chronic infection with hepatitis B viruses and antiviral drug evaluation in uPA mice after liver repopulation with tupaia hepatocytes. J. Hepatol. 42, 54–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Sandgren, E.P. et al. Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene. Cell 66, 245–256 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Tateno, C. et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am. J. Pathol. 165, 901–912 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Katoh, M. et al. In vivo drug metabolism model for human cytochrome P450 enzyme using chimeric mice with humanized liver. J. Pharm. Sci. 96, 428–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Turrini, P. et al. Development of humanized mice for the study of hepatitis C virus infection. Transplant. Proc. 38, 1181–1184 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Grompe, M. et al. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev. 7, 2298–2307 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Overturf, K. et al. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat. Genet. 12, 266–273 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Grompe, M. et al. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat. Genet. 10, 453–460 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Dick, J.E., Bhatia, M., Gan, O., Kapp, U. & Wang, J.C. Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells 15 Suppl 1, 199–203; discussion 204–197 (1997).

    Article  PubMed  Google Scholar 

  14. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Blunt, T. et al. Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse. Proc. Natl. Acad. Sci. USA 93, 10285–10290 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Traggiai, E. et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304, 104–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Gorantla, S. et al. Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2−/−gammac−/− mice. J. Virol. 81, 2700–2712 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Lieber, A., Peeters, M.J., Gown, A., Perkins, J. & Kay, M.A. A modified urokinase plasminogen activator induces liver regeneration without bleeding. Hum. Gene Ther. 6, 1029–1037 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Lieber, A. et al. Adenovirus-mediated urokinase gene transfer induces liver regeneration and allows for efficient retrovirus transduction of hepatocytes in vivo. Proc. Natl. Acad. Sci. USA 92, 6210–6214 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Knox, W.E. & Edwards, S.W. Enzymes involved in conversion of tyrosine to acetoacetate. Methods Enzymol. 2, 287–300 (1955).

    Article  CAS  Google Scholar 

  21. Meuleman, P. et al. Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera. Hepatology 41, 847–856 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Okamura, K. et al. Generation of hybrid hepatocytes by cell fusion from monkey embryoid body cells in the injured mouse liver. Histochem. Cell Biol. 125, 247–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Aoki, K. et al. Characterization of humanized liver from chimeric mice using coumarin as a human CYP2A6 and mouse CYP2A5 probe. Drug Metab. Pharmacokinet. 21, 277–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Katoh, M. et al. Expression of human cytochromes P450 in chimeric mice with humanized liver. Drug Metab. Dispos. 32, 1402–1410 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Katoh, M. et al. In vivo induction of human cytochrome P450 enzymes expressed in chimeric mice with humanized liver. Drug Metab. Dispos. 33, 754–763 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Mercer, D.F. et al. Hepatitis C virus replication in mice with chimeric human livers. Nat. Med. 7, 927–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Nakagawa, S. et al. Hsp90 inhibitors suppress HCV replication in replicon cells and humanized liver mice. Biochem. Biophys. Res. Commun. 353, 882–888 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Nishimura, M. et al. Evaluation of mRNA expression of human drug-metabolizing enzymes and transporters in chimeric mouse with humanized liver. Xenobiotica 35, 877–890 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Yoshitsugu, H. et al. Evaluation of human CYP1A2 and CYP3A4 mRNA expression in hepatocytes from chimeric mice with humanized liver. Drug Metab. Pharmacokinet. 21, 465–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Overturf, K., Al-Dhalimy, M., Ou, C.N., Finegold, M. & Grompe, M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am. J. Pathol. 151, 1273–1280 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Kostrubsky, V.E. et al. The role of conjugation in hepatotoxicity of troglitazone in human and porcine hepatocyte cultures. Drug Metab. Dispos. 28, 1192–1197 (2000).

    CAS  PubMed  Google Scholar 

  33. Kostrubsky, S.E. et al. Inhibition of hepatobiliary transport as a predictive method for clinical hepatotoxicity of nefazodone. Toxicol. Sci. 90, 451–459 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Schiedner, G. et al. Selective depletion or blockade of Kupffer cells leads to enhanced and prolonged hepatic transgene expression using high-capacity adenoviral vectors. Mol. Ther. 7, 35–43 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. McKenzie, J.L., Gan, O.I., Doedens, M. & Dick, J.E. Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood 106, 1259–1261 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Yamamoto, N. et al. An optimal culture condition maintains human hepatocyte phenotype after long-term culture. Hepatol. Res. 35, 169–177 (2006).

    CAS  PubMed  Google Scholar 

  37. Strom, S.C. et al. Use of human hepatocytes to study P450 gene induction. Methods Enzymol. 272, 388–401 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Komoroski, B.J. et al. Induction and inhibition of cytochromes P450 by the St. John's wort constituent hyperforin in human hepatocyte cultures. Drug Metab. Dispos. 32, 512–518 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, X. et al. Kinetics of liver repopulation after bone marrow transplantation. Am. J. Pathol. 161, 565–574 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kostrubsky, V.E. et al. The use of human hepatocyte cultures to study the induction of cytochrome P-450. Drug Metab. Dispos. 27, 887–894 (1999).

    CAS  PubMed  Google Scholar 

  41. Wen, Y.H. et al. Effects of bergamottin on human and monkey drug-metabolizing enzymes in primary cultured hepatocytes. Drug Metab. Dispos. 30, 977–984 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Berry, M.N. & Friend, D.S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J. Cell Biol. 43, 506–520 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant RO1-DK48252 and funds from the Juvenile Diabetes Foundation to M.G. and NIH grants DK 92310 and GM 06346 to S.S.

Author information

Authors and Affiliations

Authors

Contributions

H.A., primary experimenter, performed all transplantations and analyzed repopulated mice; N.P., FISH in Supplementary Figure 2; A.R., E.E., drug metabolism and drug metabolism gene expression; C.D., FACS analysis; M.A.-D., mouse breeding and transplantation assistance; S.S., provided human hepatocytes and supervised drug metabolism work; M.A.K., provided urokinase adenovirus; M.F., all tissue histology; M.G., overall project planning and coordination.

Corresponding author

Correspondence to Markus Grompe.

Ethics declarations

Competing interests

M.G. owns stock shares in Yecuris, Inc., which has licensed the FRG liver repopulation technology.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 1068 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azuma, H., Paulk, N., Ranade, A. et al. Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat Biotechnol 25, 903–910 (2007). https://doi.org/10.1038/nbt1326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1326

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing