Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-throughput mapping of the chromatin structure of human promoters

Abstract

Our understanding of how chromatin structure influences cellular processes such as transcription and replication has been limited by a lack of nucleosome-positioning data in human cells. We describe a high-resolution microarray approach combined with an analysis algorithm to examine nucleosome positioning in 3,692 promoters within seven human cell lines. Unlike unexpressed genes without transcription-preinitiation complexes at their promoters, expressed genes or genes containing preinitiation complexes exhibit characteristic nucleosome-free regions at their transcription start sites. The combination of these nucleosome data with chromatin immunoprecipitation–chip analyses reveals that the melanocyte master regulator microphthalmia-associated transcription factor (MITF) predominantly binds nucleosome-free regions, supporting the model that nucleosomes limit sequence accessibility. This study presents a global view of human nucleosome positioning and provides a high-throughput tool for analyzing chromatin structure in development and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Positioned nucleosomes are detected in a reproducible manner and identified positioned-nucleosomes correlate well with the literature.
Figure 2: Nucleosome-free regions at transcription start sites of expressed genes or genes with preinitiation complexes (PIC) at their promoters.
Figure 3: MITF binding sites are mostly nucleosome-free.
Figure 4: Variations in nucleosome positioning at the CDK2-SILV promoter locus correlate with lineage-specific SILV expression patterns, because the SILV gene is expressed selectively in melanocytes and melanomas23.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Lu, Q., Wallrath, L.L. & Elgin, S.C. Nucleosome positioning and gene regulation. J. Cell. Biochem. 55, 83–92 (1994).

    Article  CAS  Google Scholar 

  2. Widom, J. Structure, dynamics, and function of chromatin in vitro. Annu. Rev. Biophys. Biomol. Struct. 27, 285–327 (1998).

    Article  CAS  Google Scholar 

  3. Lee, T.I. & Young, R.A. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77–137 (2000).

    Article  CAS  Google Scholar 

  4. Workman, J.L. & Kingston, R.E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545–579 (1998).

    Article  CAS  Google Scholar 

  5. Becker, P.B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).

    Article  CAS  Google Scholar 

  6. Mellor, J. The dynamics of chromatin remodeling at promoters. Mol. Cell 19, 147–157 (2005).

    Article  CAS  Google Scholar 

  7. Yuan, G.C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005).

    Article  CAS  Google Scholar 

  8. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  Google Scholar 

  9. Ioshikhes, I.P., Albert, I., Zanton, S.J. & Pugh, B.F. Nucleosome positions predicted through comparative genomics. Nat. Genet. 38, 1210–1215 (2006).

    Article  CAS  Google Scholar 

  10. Carroll, J.S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005).

    Article  CAS  Google Scholar 

  11. Kim, T.H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005).

    Article  CAS  Google Scholar 

  12. Mucha, M., Lisowska, K., Goc, A. & Filipski, J. Nuclease-hypersensitive chromatin formed by a CpG island in human DNA cloned as an artificial chromosome in yeast. J. Biol. Chem. 275, 1275–1278 (2000).

    Article  CAS  Google Scholar 

  13. Reid, D.G., Salisbury, S.A., Brown, T. & Williams, D.H. Conformations of two duplex forms of d(TCGA) in slow-exchange equilibrium characterized by NMR. Biochemistry 24, 4325–4332 (1985).

    Article  CAS  Google Scholar 

  14. Wang, Y.H., Amirhaeri, S., Kang, S., Wells, R.D. & Griffith, J.D. Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene. Science 265, 669–671 (1994).

    Article  CAS  Google Scholar 

  15. Horz, W. & Altenburger, W. Sequence specific cleavage of DNA by micrococcal nuclease. Nucleic Acids Res. 9, 2643–2658 (1981).

    Article  CAS  Google Scholar 

  16. Anderson, J.D. & Widom, J. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 296, 979–987 (2000).

    Article  CAS  Google Scholar 

  17. Lee, C.K., Shibata, Y., Rao, B., Strahl, B.D. & Lieb, J.D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat. Genet. 36, 900–905 (2004).

    Article  CAS  Google Scholar 

  18. Pokholok, D.K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).

    Article  CAS  Google Scholar 

  19. Mito, Y., Henikoff, J.G. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nat. Genet. 37, 1090–1097 (2005).

    Article  CAS  Google Scholar 

  20. Hoffmann, A., Oelgeschlager, T. & Roeder, R.G. Considerations of transcriptional control mechanisms: do TFIID-core promoter complexes recapitulate nucleosome-like functions? Proc. Natl. Acad. Sci. USA 94, 8928–8935 (1997).

    Article  CAS  Google Scholar 

  21. Garraway, L.A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

    Article  CAS  Google Scholar 

  22. Bernstein, B.E., Liu, C.L., Humphrey, E.L., Perlstein, E.O. & Schreiber, S.L. Global nucleosome occupancy in yeast. Genome Biol. 5, R62 (2004).

    Article  Google Scholar 

  23. Du, J. et al. Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6, 565–576 (2004).

    Article  CAS  Google Scholar 

  24. McGill, G.G. et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109, 707–718 (2002).

    Article  CAS  Google Scholar 

  25. Chen, C. & Yang, T.P. Nucleosomes are translationally positioned on the active allele and rotationally positioned on the inactive allele of the HPRT promoter. Mol. Cell. Biol. 21, 7682–7695 (2001).

    Article  CAS  Google Scholar 

  26. Zhang, Y. et al. Reproducible and inexpensive probe preparation for oligonucleotide arrays. Nucleic Acids Res. 29, E66 (2001).

    Article  CAS  Google Scholar 

  27. Kouskouti, A. & Talianidis, I. Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J. 24, 347–357 (2005).

    Article  CAS  Google Scholar 

  28. Dai, M. et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 33, e175 (2005).

    Article  Google Scholar 

  29. Johnson, W.E. et al. Model-based analysis of tiling-arrays for ChIP-chip. Proc. Natl. Acad. Sci. USA 103, 12457–12462 (2006).

    Article  CAS  Google Scholar 

  30. Fivaz, J., Bassi, M.C., Price, M., Pinaud, S. & Mirkovitch, J. Precisely positioned nucleosomes are not essential for c-fos gene regulation in vivo. Gene 255, 169–184 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Widlund, E. Feige, V. Igras, I. Davis, W. Li and C. Meyer for helpful discussions and support. This work was supported by a grant from the US National Institutes of Health to D.E.F. and the Claudia Adams Barr Award for Innovative Basic Cancer Research to X.S.L. D.E.F. is Distinguished Clinical Scholar of the Doris Duke Charitable Foundation, and Charles and Jan Nirenberg Fellow in Pediatric Oncology at Dana-Farber Cancer Institute. J.S.S. was supported by the Claudia Adams Barr Award from Dana Farber Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X Shirley Liu or David E Fisher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Genes with at least 2 additional positioned nucleosomes present in MCF7 and T47D but not in MEC. (XLS 60 kb)

Supplementary Data (PDF 914 kb)

Supplementary Discussion (PDF 70 kb)

Supplementary Methods (PDF 45 kb)

Supplementary Notes (PDF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozsolak, F., Song, J., Liu, X. et al. High-throughput mapping of the chromatin structure of human promoters. Nat Biotechnol 25, 244–248 (2007). https://doi.org/10.1038/nbt1279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing