Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Complement-targeted therapeutics

Abstract

The complement system is a central component of innate immunity and bridges the innate to the adaptive immune response. However, it can also turn its destructive capabilities against host cells and is involved in numerous diseases and pathological conditions. Modulation of the complement system has been recognized as a promising strategy in drug discovery, and a large number of therapeutic modalities have been developed. However, successful marketing of complement-targeted drugs has proved to be more difficult than initially expected, and many strategies have been discontinued. The US Food and Drug Administration's approval of the first complement-specific drug, an antibody against complement component C5 (eculizumab; Soliris), in March 2007, was a long-awaited breakthrough in the field. Approval of eculizumab validates the complement system as therapeutic target and might facilitate clinical development of other promising drug candidates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The complement system as a bridge between innate and adaptive immunity.

Katie Ris-Vicari

Figure 2: Activation, regulation and therapeutic modulation of the complement system.
Figure 3: Examples of pathological conditions involving the complement system.

Similar content being viewed by others

References

  1. Nuttall, G. Experimente über die bacterienfeindlichen Einflüsse des thierischen Körpers. Z. Hyg. Infektionskr. 4, 353–394 (1888).

    Google Scholar 

  2. Ehrlich, P. & Morgenroth, J. Ueber haemolysine—zweite mittheilung. Berl. Klin. Wochenschr., 481–486 (1899).

  3. US Food and Drug Administration. FDA approves first-of-its-kind drug to treat rare blood disorder (USFDA, Rockville, MD, USA) (http://www.fda.gov/bbs/topics/NEWS/2007/NEW01589.html) (March 16, 2007).

  4. Sunyer, J.O., Zarkadis, I.K. & Lambris, J.D. Complement diversity: a mechanism for generating immune diversity? Immunol. Today 19, 519–523 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Walport, M.J. Complement. First of two parts. N. Engl. J. Med. 344, 1058–1066 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Walport, M.J. Complement. Second of two parts. N. Engl. J. Med. 344, 1140–1144 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Longhi, M.P., Harris, C.L., Morgan, B.P. & Gallimore, A. Holding T cells in check–a new role for complement regulators? Trends Immunol. 27, 102–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Morgan, B.P., Marchbank, K.J., Longhi, M.P., Harris, C.L. & Gallimore, A.M. Complement: central to innate immunity and bridging to adaptive responses. Immunol. Lett. 97, 171–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Mastellos, D. & Lambris, J.D. Complement: more than a 'guard' against invading pathogens? Trends Immunol. 23, 485–491 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Atkinson, J.P. & Frank, M.M. Bypassing complement: evolutionary lessons and future implications. J. Clin. Invest. 116, 1215–1218 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Markiewski, M.M., Nilsson, B., Nilsson Ekdahl, K., Mollnes, T.E. & Lambris, J.D. Complement and coagulation: strangers or partners in crime? Trends Immunol. 28, 184–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Hourcade, D.E. The role of properdin in the assembly of the alternative pathway C3 convertases of complement. J. Biol. Chem. 281, 2128–2132 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Spitzer, D., Mitchell, L.M., Atkinson, J.P. & Hourcade, D.E. Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J. Immunol. 179, 2600–2608 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Kirkitadze, M.D. & Barlow, P.N. Structure and flexibility of the multiple domain proteins that regulate complement activation. Immunol. Rev. 180, 146–161 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Soares, D.C. & Barlow, P.N. Complement control protein modules in the regulators of complement activation. in Structural Biology of the Complement System. (eds. Morikis, D. & Lambris, J.D.) 19–62 (CRC Press, Boca Raton, Florida, 2005).

    Google Scholar 

  16. Volanakis, J.E. & Frank, M. (eds.). The Human Complement System in Health and Disease. (Marcel Dekker, Inc., New York, 1998).

    Book  Google Scholar 

  17. Sahu, A. & Lambris, J.D. Complement inhibitors: a resurgent concept in anti-inflammatory therapeutics. Immunopharmacology 49, 133–148 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Markiewski, M.M. & Lambris, J.D. The role of complement in inflammatory diseases—from behind the scenes into the spotlight. Am. J. Pathol. 171, 715–727 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manderson, A.P., Botto, M. & Walport, M.J. The role of complement in the development of systemic lupus erythematosus. Annu. Rev. Immunol. 22, 431–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Guo, R.F. & Ward, P.A. Role of C5a in inflammatory responses. Annu. Rev. Immunol. 23, 821–852 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Bonifati, D.M. & Kishore, U. Role of complement in neurodegeneration and neuroinflammation. Mol. Immunol. 44, 999–1010 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Zipfel, P.F., Heinen, S., Jozsi, M. & Skerka, C. Complement and diseases: defective alternative pathway control results in kidney and eye diseases. Mol. Immunol. 43, 97–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Davis, A.E. III., The pathophysiology of hereditary angioedema. Clin. Immunol. 114, 3–9 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Wagenaar-Bos, I.G. & Hack, C.E. Structure and function of C1-inhibitor. Immunol. Allergy Clin. North Am. 26, 615–632 (2006).

    Article  PubMed  Google Scholar 

  25. Hill, A., Richards, S.J. & Hillmen, P. Recent developments in the understanding and management of paroxysmal nocturnal haemoglobinuria. Br. J. Haematol. 137, 181–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Rooijakkers, S.H. & van Strijp, J.A. Bacterial complement evasion. Mol. Immunol. 44, 23–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Datta, P.K. & Rappaport, J. HIV and complement: hijacking an immune defense. Biomed. Pharmacother. 60, 561–568 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Hammel, M. et al. A structural basis for complement inhibition by Staphylococcus aureus. Nat. Immunol. 8, 430–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. de Haas, C.J. et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199, 687–695 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rooijakkers, S.H. et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat. Immunol. 6, 920–927 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Bureeva, S., Andia-Pravdivy, J. & Kaplun, A. Drug design using the example of the complement system inhibitors' development. Drug Discov. Today 10, 1535–1542 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Makrides, S.C. Therapeutic inhibition of the complement system. Pharmacol. Rev. 50, 59–87 (1998).

    CAS  PubMed  Google Scholar 

  33. Lambris, J.D. & Holers, V.M. (eds.) Therapeutic Interventions in the Complement System (Humana Press, Totowa, NJ, USA, 2000).

    Book  Google Scholar 

  34. Holland, M.C., Morikis, D. & Lambris, J.D. Synthetic small-molecule complement inhibitors. Curr. Opin. Investig. Drugs 5, 1164–1173 (2004).

    CAS  PubMed  Google Scholar 

  35. Arkin, M.R. & Wells, J.A. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat. Rev. Drug Discov. 3, 301–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Sim, R.B. & Tsiftsoglou, S.A. Proteases of the complement system. Biochem. Soc. Trans. 32, 21–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Narayana, S.V., Babu, Y.S. & Volanakis, J.E. Inhibition of complement serine proteases as a therapeutic strategy. in Therapeutic Interventions in the Complement System. (eds. J.D. Lambris & V.M. Holers) 57–74 (Humana Press, Totowa, New Jersey, 2000).

    Chapter  Google Scholar 

  38. Szalai, A.J. et al. The Arthus reaction in rodents: species-specific requirement of complement. J. Immunol. 164, 463–468 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Buerke, M., Schwertz, H., Seitz, W., Meyer, J. & Darius, H. Novel small molecule inhibitor of C1s exerts cardioprotective effects in ischemia-reperfusion injury in rabbits. J. Immunol. 167, 5375–5380 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Agostoni, A., Cicardi, M., Bergamaschini, L., Boccassini, G. & Tucci, A. C1-inhibitor concentrate for treatment of hereditary angioedema. N. Engl. J. Med. 303, 527 (1980).

    Article  CAS  PubMed  Google Scholar 

  41. Kirschfink, M. & Mollnes, T.E. C1-inhibitor: an anti-inflammatory reagent with therapeutic potential. Expert Opin. Pharmacother. 2, 1073–1083 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. De Serres, J., Groner, A. & Lindner, J. Safety and efficacy of pasteurized C1 inhibitor concentrate (Berinert P) in hereditary angioedema: a review. Transfus. Apher. Sci. 29, 247–254 (2003).

    Article  PubMed  Google Scholar 

  43. Longhurst, H.J., Carr, S. & Khair, K. C1-inhibitor concentrate home therapy for hereditary angioedema: a viable, effective treatment option. Clin. Exp. Immunol. 147, 11–17 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bork, K., Barnstedt, S.E., Koch, P. & Traupe, H. Hereditary angioedema with normal C1-inhibitor activity in women. Lancet 356, 213–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Pensky, J., Levy, L.R. & Lepow, I.H. Partial purification of a serum inhibitor of C′1-esterase. J. Biol. Chem. 236, 1674–1679 (1961).

    CAS  PubMed  Google Scholar 

  46. Caliezi, C. et al. C1-Esterase inhibitor: an anti-inflammatory agent and its potential use in the treatment of diseases other than hereditary angioedema. Pharmacol. Rev. 52, 91–112 (2000).

    CAS  PubMed  Google Scholar 

  47. Nielsen, E.W. et al. Effect of supraphysiologic levels of C1-inhibitor on the classical, lectin and alternative pathways of complement. Mol. Immunol. 44, 1819–1826 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Lauterbach, M. et al. C1-esterase inhibitor reverses functional consequences of superior mesenteric artery ischemia/reperfusion by limiting reperfusion injury and restoring microcirculatory perfusion. Shock 27, 75–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Lev Pharmaceuticals. Lev Pharmaceuticals reports positive results in pivotal phase III trial for hereditary angioedema (Lev Pharmaceuticals, New York) (http://www.levpharma.com/investors.news.3.14.07.aspx) (March 14, 2007).

  50. Zuraw, B.L. Novel therapies for hereditary angioedema. Immunol. Allergy Clin. North Am. 26, 691–708 (2006).

    Article  PubMed  Google Scholar 

  51. van Doorn, M.B. et al. A phase I study of recombinant human C1 inhibitor in asymptomatic patients with hereditary angioedema. J. Allergy Clin. Immunol. 116, 876–883 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Brook, E., Herbert, A.P., Jenkins, H.T., Soares, D.C. & Barlow, P.N. Opportunities for new therapies based on the natural regulators of complement activation. Ann. NY Acad. Sci. 1056, 176–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Weisman, H.F. et al. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science 249, 146–151 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Li, J.S., Jaggers, J. & Anderson, P.A. The use of TP10, soluble complement receptor 1, in cardiopulmonary bypass. Expert Rev. Cardiovasc. Ther. 4, 649–654 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Avant Immunotherapeutics, Inc. Press Release: AVANT Restructures Organization to Focus Resources on Core Programs and Operations (Avant Immunotherapeutics, Needham, MA) http://phx.corporate-ir.net/phoenix.zhtml?c=93243&p=irol-newsArticle&t=Regular&id=985098& (April 16, 2007).

  56. Rittershaus, C.W. et al. Recombinant glycoproteins that inhibit complement activation and also bind the selectin adhesion molecules. J. Biol. Chem. 274, 11237–11244 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Smith, R.A. Targeting anticomplement agents. Biochem. Soc. Trans. 30, 1037–1041 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Hill, A. et al. Protection of erythrocytes from human complement-mediated lysis by membrane-targeted recombinant soluble CD59: a new approach to PNH therapy. Blood 107, 2131–2137 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Presta, L.G. Selection, design, and engineering of therapeutic antibodies. J. Allergy Clin. Immunol. 116, 731–736 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Frei, Y., Lambris, J.D. & Stockinger, B. Generation of a monoclonal antibody to mouse C5 application in an ELISA assay for detection of anti-C5 antibodies. Mol. Cell. Probes 1, 141–149 (1987).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, Y., Rollins, S.A., Madri, J.A. & Matis, L.A. Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease. Proc. Natl. Acad. Sci. USA 92, 8955–8959 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alexion Pharmaceuticals, Inc., FDA approves Alexion's Soliris(TM) for all patients with PNH—first therapy approved for this rare and life-threatening blood disease (Alexion, Cheshire, CT) http://ir.alexionpharm.com/releasedetail.cfm?ReleaseID=234156 (March 16, 2007).

  63. Thomas, T.C. et al. Inhibition of complement activity by humanized anti-C5 antibody and single-chain Fv. Mol. Immunol. 33, 1389–1401 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Proctor, L.M., Woodruff, T.M. & Taylor, S.M. Recent developments in C5/C5a inhibitors. Expert Opin. Ther. Pat. 16, 445–458 (2006).

    Article  CAS  Google Scholar 

  65. Adis International Ltd. Eculizumab. Drugs R D. 8, 61–68 (2007).

  66. Whiss, P.A. Pexelizumab Alexion. Curr. Opin. Investig. Drugs 3, 870–877 (2002).

    CAS  PubMed  Google Scholar 

  67. Armstrong, P.W. et al. Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. J. Am. Med. Assoc. 297, 43–51 (2007).

    Article  CAS  Google Scholar 

  68. Morrow, T. A promising theory stumbles in clinical trials. Manag. Care 16, 69–70 (2007).

    PubMed  Google Scholar 

  69. Steve Mitchell. Analysis: Alexion's pexelizumab fails (January 2, 2007) http://www.upi.com/Health_Business/Analysis/2007/01/02/analysis_alexions_pexelizumab_fails/6113/

  70. Taube, C. et al. Factor B of the alternative complement pathway regulates development of airway hyperresponsiveness and inflammation. Proc. Natl. Acad. Sci. USA 103, 8084–8089 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Teeling, J.L. et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 104, 1793–1800 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Teeling, J.L. et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J. Immunol. 177, 362–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Sahu, A., Kay, B.K. & Lambris, J.D. Inhibition of human complement by a C3-binding peptide isolated from a phage-displayed random peptide library. J. Immunol. 157, 884–891 (1996).

    CAS  PubMed  Google Scholar 

  74. Janssen, B.J., Halff, E.F., Lambris, J.D. & Gros, P. Structure of compstatin in complex with complement component C3c reveals a new mechanism of complement inhibition, J. Biol. Chem. 282, 29241–29247 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Sahu, A., Morikis, D. & Lambris, J.D. Compstatin, a peptide inhibitor of complement, exhibits species-specific binding to complement component C3. Mol. Immunol. 39, 557–566 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Katragadda, M., Magotti, P., Sfyroera, G. & Lambris, J.D. Hydrophobic effect and hydrogen bonds account for the improved activity of a complement inhibitor, compstatin. J. Med. Chem. 49, 4616–4622 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Potentia Pharmaceuticals, Inc., Potentia Pharmaceuticals announces initiation of phase I clinical trials to evaluate its lead compound for age-related macular degeneration (Potentia, Louisville, KY) http://www.prnewswire.com/cgi-bin/stories.pl?ACCT=104&STORY=/www/story/03-20-2007/0004549227&EDATE= (March 20, 2007).

  78. Biesecker, G., Dihel, L., Enney, K. & Bendele, R.A. Derivation of RNA aptamer inhibitors of human complement C5. Immunopharmacology 42, 219–230 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Bunka, D.H. & Stockley, P.G. Aptamers come of age—at last. Nat. Rev. Microbiol. 4, 588–596 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Ng, E.W. et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 5, 123–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Monk, P.N., Scola, A.M., Madala, P. & Fairlie, D.P. Function, structure and therapeutic potential of complement C5a receptors. Br. J. Pharmacol., 152, 429–448 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen, N.J. et al. C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature 446, 203–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Allegretti, M. et al. Targeting C5a: recent advances in drug discovery. Curr. Med. Chem. 12, 217–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Wong, A.K., Taylor, S.M. & Fairlie, D.P. Development of C5a receptor antagonists. IDrugs 2, 686–693 (1999).

    CAS  PubMed  Google Scholar 

  85. Kohl, J. Drug evaluation: the C5a receptor antagonist PMX-53. Curr. Opin. Mol. Ther. 8, 529–538 (2006).

    CAS  PubMed  Google Scholar 

  86. March, D.R. et al. Potent cyclic antagonists of the complement C5a receptor on human polymorphonuclear leukocytes. Relationships between structures and activity. Mol. Pharmacol. 65, 868–879 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Woodruff, T.M. et al. Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration. FASEB J. 20, 1407–1417 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Petersen, K.A. et al. Phase I safety, tolerability, and pharmacokinetic study of recombinant human mannan-binding lectin. J. Clin. Immunol. 26, 465–475 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Bureeva, S. et al. Selective inhibition of the interaction of C1q with immunoglobulins and the classical pathway of complement activation by steroids and triterpenoids sulfates. Bioorg. Med. Chem. 15, 3489–3498 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Janssen, B.J. et al. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437, 505–511 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Janssen, B.J., Christodoulidou, A., McCarthy, A., Lambris, J.D. & Gros, P. Structure of C3b reveals conformational changes that underlie complement activity. Nature 444, 213–216 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Wiesmann, C. et al. Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature 444, 217–220 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Nagar, B., Jones, R.G., Diefenbach, R.J., Isenman, D.E. & Rini, J.M. X-ray crystal structure of C3d: a C3 fragment and ligand for complement receptor 2. Science 280, 1277–1281 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Milder, F.J. et al. Factor B structure provides insights into activation of the central protease of the complement system. Nat. Struct. Mol. Biol. 14, 224–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Narayana, S.V. et al. Structure of human factor D. A complement system protein at 2.0 A resolution. J. Mol. Biol. 235, 695–708 (1994).

    Article  CAS  PubMed  Google Scholar 

  96. Katschke, K.J. Jr. et al. A novel inhibitor of the alternative pathway of complement reverses inflammation and bone destruction in experimental arthritis. J. Exp. Med. 204, 1319–1325 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Keller, T.H., Pichota, A. & Yin, Z. A practical view of 'druggability'. Curr. Opin. Chem. Biol. 10, 357–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Hopkins, A.L. & Groom, C.R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Gould Rothberg, B.E., Pena, C.E.A. & Rothberg, J.M. A systems biology approach to target identification and validation for human chronic disease drug discovery. Modern Biopharmaceuticals, vol. 1 (ed. Knäblein, J.) 99–125 (Wiley-VCH Verlag, 2005).

    Chapter  Google Scholar 

  101. Adams, C.P. & Brantner, V.V. Estimating the cost of new drug development: is it really 802 million dollars? Health Aff. (Millwood) 25, 420–428 (2006).

    Article  Google Scholar 

  102. Haffner, M.E., Whitley, J. & Moses, M. Two decades of orphan product development. Nat. Rev. Drug Discov. 1, 821–825 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Title 21. United States Code (USC) Section 360ee.

Download references

Acknowledgements

We thank Peter Ward, Wenchao Song and Maciej Markiewski for their input and for critically reading the manuscript and Deborah McClellan for editorial assistance. This work was supported by National Institutes of Health grants GM-069736, GM-62134, AI-30040, EB003968, CA112162 and AI-068730.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D Lambris.

Ethics declarations

Competing interests

J.D.L., along with the University of Pennsylvania, has one issued and five pending patents on compstatin. These patents have been licensed for ophthalmic indications to Potentia Pharmaceuticals, Inc. J.D.L. is also a nonequity-holding member of the Scientific Advisory Board of Potentia Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricklin, D., Lambris, J. Complement-targeted therapeutics. Nat Biotechnol 25, 1265–1275 (2007). https://doi.org/10.1038/nbt1342

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing