Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Deviant effects in molecular reaction pathways

Abstract

In biological networks, any manifestations of behaviors substantially 'deviant' from the predictions of continuous-deterministic classical chemical kinetics (CCK) are typically ascribed to systems with complex dynamics and/or a small number of molecules. Here we show that in certain cases such restrictions are not obligatory for CCK to be largely incorrect. By systematically identifying properties that may cause significant divergences between CCK and the more accurate discrete-stochastic chemical master equation (CME) system descriptions, we comprehensively characterize potential CCK failure patterns in biological settings, including consequences of the assertion that CCK is closer to the 'mode' rather than the 'average' of stochastic reaction dynamics, as generally perceived. We demonstrate that mechanisms underlying such nonclassical effects can be very simple, are common in cellular networks and result in often unintuitive system behaviors. This highlights the importance of deviant effects in biotechnologically or biomedically relevant applications, and suggests some approaches to diagnosing them in situ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristic CME distribution examples.
Figure 2: A signaling pathway motif.
Figure 3: Type I system evolution.
Figure 4: Type II system evolution.
Figure 5: Type III deviant behavior.

Similar content being viewed by others

References

  1. Berry, R.S., Rice, S.A. & Ross, J. Physical chemistry, edn. 2 (Oxford University Press, New York; 2000).

    Google Scholar 

  2. Gillespie, D.T. A rigorous derivation of the chemical master equation. Physica A (Amsterdam) 188, 404–425 (1992).

    Article  CAS  Google Scholar 

  3. Van Kampen, N.G. Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam; 1992).

    Google Scholar 

  4. Gillespie, D.T. Markov Processes (Academic Press, Boston; 1992).

    Google Scholar 

  5. Gillespie, D.T. in Handbook of Materials Modeling (ed. Yip, S.) 1735–1752 (Springer, Netherlands; 2005).

    Google Scholar 

  6. McQuarrie, D.A., Jachimowski, C.J. & Russell, M.E. Kinetics of small systems. II. J. Chem. Phys. 40, 2914–2921 (1964).

    Article  CAS  Google Scholar 

  7. Zheng, Q. & Ross, J. Comparison of deterministic and stochastic kinetics for nonlinear systems. J. Chem. Phys. 94, 3644–3648 (1991).

    Article  CAS  Google Scholar 

  8. Behrmann, I. et al. A single STAT recruitment module in a chimeric cytokine receptor complex is sufficient for STAT activation. J. Biol. Chem. 272, 5269–5274 (1997).

    Article  CAS  Google Scholar 

  9. Levy, D.E. & Darnell, J.E., Jr. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  Google Scholar 

  10. Kisseleva, T., Bhattacharya, S., Braunstein, J. & Schindler, C.W. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285, 1–24 (2002).

    Article  CAS  Google Scholar 

  11. Yamaoka, K. et al. The Janus kinases (Jaks). Genome Biol. 5, 253 (2004).

    Article  Google Scholar 

  12. McBride, K.M., McDonald, C. & Reich, N.C. Nuclear export signal located within the DNA-binding domain of the STAT1 transcription factor. EMBO J. 19, 6196–6206 (2000).

    Article  CAS  Google Scholar 

  13. Voet, D., Voet, J.G. & Pratt, C.W. Fundamentals of Biochemistry (Wiley, New York; 1999).

    Google Scholar 

  14. Zhang, X. et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl. Acad. Sci. USA 102, 4459–4464 (2005).

    Article  CAS  Google Scholar 

  15. Giraldo, R. & Fernandez-Tresguerres, M.E. Twenty years of the pPS10 replicon: insights on the molecular mechanism for the activation of DNA replication in iteron-containing bacterial plasmids. Plasmid 52, 69–83 (2004).

    Article  CAS  Google Scholar 

  16. Endy, D., Kong, D. & Yin, J. Intracellular kinetics of a growing virus: a genetically structured simulation for bacteriophage T7. Biotechnol. Bioeng. 55, 375–389 (1997).

    Article  CAS  Google Scholar 

  17. Srivastava, R., You, L., Summers, J. & Yin, J. Stochastic vs. deterministic modeling of intracellular viral kinetics. J. Theor. Biol. 218, 309–321 (2002).

    Article  CAS  Google Scholar 

  18. Arkin, A., Ross, J. & McAdams, H.H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Clardy, J. & Walsh, C. Lessons from natural molecules. Nature 432, 829–837 (2004).

    Article  CAS  Google Scholar 

  20. Salyers, A.A. & Whitt, D.D. Bacterial Pathogenesis: A Molecular Approach, edn. 2 (ASM Press, Washington, D.C.; 2002).

    Google Scholar 

  21. Stryer, L. Biochemistry, edn. 4 (W.H. Freeman, New York; 1995).

    Google Scholar 

  22. Samoilov, M., Plyasunov, S. & Arkin, A.P. Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. Proc. Natl. Acad. Sci. USA 102, 2310–2315 (2005).

    Article  CAS  Google Scholar 

  23. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J., III & Doyle, J. Robustness of cellular functions. Cell 118, 675–685 (2004).

    Article  CAS  Google Scholar 

  24. Simpson, M.L., Cox, C.D., Peterson, G.D. & Sayler, G.S. Engineering in the biological substrate: Information processing in genetic circuits. Proc. IEEE 92, 848–863 (2004).

    Article  CAS  Google Scholar 

  25. Marhl, M., Perc, M. & Schuster, S. Selective regulation of cellular processes via protein cascades acting as band-pass filters for time-limited oscillations. FEBS Lett. 579, 5461–5465 (2005).

    Article  CAS  Google Scholar 

  26. Samoilov, M., Arkin, A. & Ross, J. Signal processing by simple chemical systems. J. Phys. Chem. A 106, 10205–10221 (2002).

    Article  CAS  Google Scholar 

  27. Ting, A.Y. & Endy, D. Signal transduction. Decoding NF-kappaB signaling. Science 298, 1189–1190 (2002).

    Article  CAS  Google Scholar 

  28. Xiong, W. & Ferrell, J.E. A positive-feedback-based bistable 'memory module' that governs a cell fate decision. Nature 426, 460–465 (2003).

    Article  CAS  Google Scholar 

  29. Pedraza, J.M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1969 (2005).

    Article  CAS  Google Scholar 

  30. Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S. & Elowitz, M.B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005).

    Article  CAS  Google Scholar 

  31. Guido, N.J. et al. A bottom-up approach to gene regulation. Nature 439, 856–860 (2006).

    Article  CAS  Google Scholar 

  32. Davis, K.L. & Roussel, M.R. Optimal observability of sustained stochastic competitive inhibition oscillations at organellar volumes. FEBS J. 273, 84–95 (2006).

    Article  CAS  Google Scholar 

  33. Blake, W.J., Kærn, M., Cantor, C.R. & Collins, J.J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    Article  CAS  Google Scholar 

  34. Qian, H., Saffarian, S. & Elson, E.L. Concentration fluctuations in a mesoscopic oscillating chemical reaction system. Proc. Natl. Acad. Sci. USA 99, 10376–10381 (2002).

    Article  CAS  Google Scholar 

  35. Raser, J.M. & O'Shea, E.K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004).

    Article  CAS  Google Scholar 

  36. Paulsson, J., Berg, O.G. & Ehrenberg, M. Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. Proc. Natl. Acad. Sci. USA 97, 7148–7153 (2000).

    Article  CAS  Google Scholar 

  37. Gillespie, D.T. & Mangel, M. Conditioned averages in chemical kinetics. J. Chem. Phys. 75, 704–709 (1981).

    Article  CAS  Google Scholar 

  38. Wolf, D.M., Vazirani, V.V. & Arkin, A.P. Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol. 234, 227–253 (2005).

    Article  Google Scholar 

  39. English, B.P. et al. Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat. Chem. Biol. 2, 87–94 (2006).

    Article  CAS  Google Scholar 

  40. Newman, J.R.S. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

    Article  CAS  Google Scholar 

  41. Gillespie, D.T. The chemical Langevin equation. J. Chem. Phys. 113, 297–306 (2000).

    Article  CAS  Google Scholar 

  42. Kurtz, T.G. The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57, 2976–2978 (1971).

    Article  Google Scholar 

  43. Van Kampen, N.G. The expansion of the master equation. Adv. Chem. Phys. 34, 245–309 (1976).

    CAS  Google Scholar 

  44. Gitterman, M. & Weiss, G.H. Some comments on approximations to the master equation. Physica A (Amsterdam) 170, 503–510 (1991).

    Article  CAS  Google Scholar 

  45. Kubo, R., Matsuo, K. & Kitahara, K. Fluctuation and relaxation of macrovariables. J. Stat. Phys. 9, 51–96 (1973).

    Article  Google Scholar 

  46. Kitahara, K. The Hamilton-Jacobi-equation approach to fluctuation phenomena. Adv. Chem. Phys. 29, 85–111 (1973).

    Google Scholar 

  47. Dykman, M.I., Mori, E., Ross, J. & Hunt, P.M. Large fluctuations and optimal paths in chemical kinetics. J. Chem. Phys. 100, 5735–5750 (1994).

    Article  CAS  Google Scholar 

  48. Samoilov, M. & Ross, J. One-dimensional chemical master equation: uniqueness and analytical form of certain solutions. J. Chem. Phys. 102, 7983–7987 (1995).

    Article  CAS  Google Scholar 

  49. Cao, Y., Li, H. & Petzold, L. Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. J. Chem. Phys. 121, 4059–4067 (2004).

    Article  CAS  Google Scholar 

  50. Cao, Y., Petzold, L.R., Rathinam, M. & Gillespie, D.T. The numerical stability of leaping methods for stochastic simulation of chemically reacting systems. J. Chem. Phys. 121, 12169–12178 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael S Samoilov or Adam P Arkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoilov, M., Arkin, A. Deviant effects in molecular reaction pathways. Nat Biotechnol 24, 1235–1240 (2006). https://doi.org/10.1038/nbt1253

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing