Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling

Abstract

Chemical genomics aims to discover small molecules that affect biological processes through the perturbation of protein function1,2. However, determining the protein targets of bioactive compounds remains a formidable challenge3. We address this problem here through the creation of a natural product–inspired small-molecule library bearing protein-reactive elements. Cell-based screening identified a compound, MJE3, that inhibits breast cancer cell proliferation. In situ proteome reactivity profiling revealed that MJE3, but not other library members, covalently labeled the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1), resulting in enzyme inhibition. Interestingly, MJE3 labeling and inhibition of PGAM1 were observed exclusively in intact cells. These results support the hypothesis that cancer cells depend on glycolysis for viability and promote PGAM1 as a potential therapeutic target. More generally, the incorporation of protein-reactive compounds into chemical genomics screens offers a means to discover targets of bioactive small molecules in living systems, thereby enabling downstream mechanistic investigations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A natural product-inspired library of protein-reactive chemical genomics probes.
Figure 2: Evaluation of the antiproliferation effects and in situ proteome reactivity profiles of spiroepoxide probes.
Figure 3: Identification and characterization of PGAM1 as the 26-kDa MJE3 target.
Figure 4: MJE3 inhibits PGAM1 activity in MDA-MB-231 cells.

Similar content being viewed by others

References

  1. Strausberg, R.L. & Schreiber, S.L. From knowing to controlling: a path from genomics to drugs using small molecule probes. Science 300, 294–295 (2003).

    Article  CAS  Google Scholar 

  2. Stockwell, B.R. Exploring biology with small organic molecules. Nature 432, 846–854 (2004).

    Article  CAS  Google Scholar 

  3. Burdine, L. & Kodadek, T. Target identification in chemical genetics: the (often) missing link. Chem. Biol. 11, 593–597 (2004).

    Article  CAS  Google Scholar 

  4. Clemons, P.A. Complex phenotypic assays in high-throughput screening. Curr. Opin. Chem. Biol. 8, 334–338 (2004).

    Article  CAS  Google Scholar 

  5. Schreiber, S.L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

    Article  CAS  Google Scholar 

  6. Dolma, S., Lessnick, S.L., Hahn, W.C. & Stockwell, B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285–296 (2003).

    Article  CAS  Google Scholar 

  7. Wu, X., Ding, S., Ding, Q., Gray, N.S. & Schultz, P.G. Small molecules that induce cardiomyogenesis in embryonic stem cells. J. Am. Chem. Soc. 126, 1590–1591 (2004).

    Article  CAS  Google Scholar 

  8. Luesch, H. et al. A genome-wide overexpression screen in yeast for small-molecule target identification. Chem. Biol. 12, 55–63 (2005).

    Article  CAS  Google Scholar 

  9. Robertson, J.G. Mechanistic basis of enzyme-targeted drugs. Biochemistry 44, 5561–5571 (2005).

    Article  CAS  Google Scholar 

  10. Drahl, C., Cravatt, B.F. & Sorensen, E.J. Protein-reactive natural products. Angew. Chem. Int. Edn. Engl. 44, 5788–5809 (2005).

    Article  CAS  Google Scholar 

  11. Liu, S., Widom, J., Kemp, C.W., Crews, C.M. & Clardy, J. Structure of human methionine aminopeptidase-2 complexed with fumagillin. Science 282, 1324–1327 (1998).

    Article  CAS  Google Scholar 

  12. Wakabayashi, T., Kageyama-Kawase, R., Naruse, N., Funahashi, Y. & Yoshimatsu, K. Luminacins: a family of capillary tube formation inhibitors from Streptomyces sp. II. Biological activities. J. Antibiot. (Tokyo) 53, 591–596 (2000).

    Article  CAS  Google Scholar 

  13. Nakajima, H. et al. New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J. Antibiot. (Tokyo) 49, 1204–1211 (1996).

    Article  CAS  Google Scholar 

  14. Speers, A.E., Adam, G.C. & Cravatt, B.F. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 4686–4687 (2003).

    Article  CAS  Google Scholar 

  15. Speers, A.E. & Cravatt, B.F. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 11, 535–546 (2004).

    Article  CAS  Google Scholar 

  16. Taunton, J. How to starve a tumor. Chem. Biol. 4, 493–496 (1997).

    Article  CAS  Google Scholar 

  17. Bogyo, M., Verhelst, S., Bellingard-Dubouchaud, V., Toba, S. & Greenbaum, D. Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs. Chem. Biol. 7, 27–38 (2000).

    Article  CAS  Google Scholar 

  18. Herrchen, M. & Legler, G. Identification of an essential carboxylate group at the active site of lacZ beta-galactosidase from Escherichia coli. Eur. J. Biochem. 138, 527–531 (1984).

    Article  CAS  Google Scholar 

  19. White, M.F. & Fothergill-Gilmore, L.A. Development of a mutagenesis, expression and purification system for yeast phosphoglycerate mutase. Investigation of the role of active-site His181. Eur. J. Biochem. 207, 709–714 (1992).

    Article  CAS  Google Scholar 

  20. Speers, A.E. & Cravatt, B.F. A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J. Am. Chem. Soc. 127, 10018–10019 (2005).

    Article  CAS  Google Scholar 

  21. Wang, Y. et al. Crystal structure of human B-type phosphoglycerate mutase bound with citrate. Biochem. Biophys. Res. Commun. 331, 1207–1215 (2005).

    Article  CAS  Google Scholar 

  22. Sirois, S., Hatzakis, G., Wei, D., Du, Q. & Chou, K.C. Assessment of chemical libraries for their druggability. Comput. Biol. Chem. 29, 55–67 (2005).

    Article  CAS  Google Scholar 

  23. Gatenby, R.A. & Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899 (2004).

    Article  CAS  Google Scholar 

  24. Rigden, D.J., Walter, R.A., Phillips, S.E. & Fothergill-Gilmore, L.A. Polyanionic inhibitors of phosphoglycerate mutase: combined structural and biochemical analysis. J. Mol. Biol. 289, 691–699 (1999).

    Article  CAS  Google Scholar 

  25. Engel, M., Mazurek, S., Eigenbrodt, E. & Welter, C. Phosphoglycerate mutase-derived polypeptide inhibits glycolytic flux and induces cell growth arrest in tumor cell lines. J. Biol. Chem. 279, 35803–35812 (2004).

    Article  CAS  Google Scholar 

  26. Kondoh, H. et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 65, 177–185 (2005).

    CAS  PubMed  Google Scholar 

  27. Kung, C. et al. Chemical genomic profiling to identify intracellular targets of a multiplex kinase inhibitor. Proc. Natl. Acad. Sci. USA 102, 3587–3592 (2005).

    Article  CAS  Google Scholar 

  28. Wong, S. et al. Sole BCR-ABL inhibition is insufficient to eliminate all myeloproliferative disorder cell populations. Proc. Natl. Acad. Sci. USA 101, 17456–17461 (2004).

    Article  CAS  Google Scholar 

  29. Mazurek, S., Zwerschke, W., Jansen-Durr, P. & Eigenbrodt, E. Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex. Biochem. J. 356, 247–256 (2001).

    Article  CAS  Google Scholar 

  30. Leung, D., Hardouin, C., Boger, D.L. & Cravatt, B.F. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nat. Biotechnol. 21, 687–691 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Tamiya for valuable contributions to the initial design of the probe library and A. Speers for assistance with the identification of the probe labeling site on PGAM1. This work was supported by the National Institutes of Health grant CA087660 (to B.F.C.), the California Breast Cancer Research Foundation (B.F.C.), a Merck Fellowship of the Life Sciences Research Foundation (A.S.) and the Skaggs Institute for Chemical Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin F Cravatt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Synthesis of a natural products-inspired spiroepoxide probe library. (PDF 168 kb)

Supplementary Fig. 2

Structures of the amine substituents of various MJE probes. (PDF 94 kb)

Supplementary Fig. 3

Evaluation of the anti-proliferation effects and in situ proteome reactivity profiles of spiroepoxide probes. (PDF 688 kb)

Supplementary Fig. 4

MJE3 inhibition of PGAM1 catalytic activity in living cells. (PDF 82 kb)

Supplementary Fig. 5

Characterization of the site of MJE3 labeling in PGAM1. (PDF 398 kb)

Supplementary Fig. 6

Structure-activity relationship of the anti-proliferative effects and PGAM1 labeling by MJE3. (PDF 195 kb)

Supplementary Methods (PDF 279 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, M., Saghatelian, A., Sorensen, E. et al. Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat Biotechnol 23, 1303–1307 (2005). https://doi.org/10.1038/nbt1149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing