Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Post-integration stabilization of a transposon vector by terminal sequence deletion in Drosophila melanogaster

Abstract

Germline transformation systems for nearly 20 insect species have been derived from transposable elements, allowing the development of transgenic insects for basic and applied studies1,2,3. These systems use a defective nonautonomous vector that results in stable vector integrations after the disappearance of transiently provided transposase helper plasmid4, which is essential to maintain true breeding lines and consistent transgene expression that would otherwise be lost after vector remobilization. The risk of remobilization by an unintended transposase source has so far not been a concern for laboratory studies, but the prospective use of millions of transgenic insects in biocontrol programs will likely increase the risk, therefore making this a critical issue for the ecological safety of field release programs5,6. Here we describe an efficient method that deletes a terminal repeat sequence of a transposon vector after genomic integration. This procedure prevents transposase-mediated remobilization of the other terminal sequence and associated genes, ensuring their genomic stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methodology for achieving transgene stabilization using the pBac{L1-PUbDsRed1-L2-3xP3-ECFP-R1} vector.
Figure 2: PCR analysis of the vector sequences in lines F34 and F34-1M.

Similar content being viewed by others

References

  1. Handler, A.M. A current perspective on insect gene transfer. Insect Biochem. Mol. Biol. 31, 111–128 (2001).

    Article  CAS  Google Scholar 

  2. Handler, A.M. & O'Brochta, D.A. Transposable elements for insect transformation. in Comprehensive Insect Physiology. Biochemistry, Pharmacology, and Molecular Biology (eds. Gilbert, L.I., Iatrou, K. & Gill, S.) in press (Elsevier Limited, Oxford, UK, 2004).

    Google Scholar 

  3. Atkinson, P.W. & James, A.A. Germline transformants spreading out to many insect species. Adv. Genet. 47, 49–86 (2002).

    Article  CAS  Google Scholar 

  4. Rubin, G.M. & Spradling, A.C. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353 (1982).

    Article  CAS  Google Scholar 

  5. Hoy, M.A. Transgenic arthropods for pest management programs: risks and realities. Exp. Appl. Acarol. 24, 463–495 (2000).

    Article  CAS  Google Scholar 

  6. Handler, A.M. Understanding and improving transgene stability and expression in insects for SIT and conditional lethal release programs. Insect Biochem. Mol. Biol. 34, 121–130 (2004).

    Article  CAS  Google Scholar 

  7. Finnegan, D.J. Transposable elements. Curr. Opin. Genet. Dev. 2, 861–867 (1992).

    Article  CAS  Google Scholar 

  8. Handler, A.M. & Harrell, R.A. Polyubiquitin-regulated DsRed marker for transgenic insects. Biotechniques 31, 820–828 (2001).

    CAS  PubMed  Google Scholar 

  9. Horn, C. & Wimmer, E.A. A versatile vector set for animal transgenesis. Dev. Genes Evol. 210, 630–637 (2000).

    Article  CAS  Google Scholar 

  10. Horn, C., Schmid, B.G., Pogoda, F.S. & Wimmer, E.A. Fluorescent transformation markers for insect transgenesis. Insect Biochem. Mol. Biol. 32, 1221–1235 (2002).

    Article  CAS  Google Scholar 

  11. Handler, A.M. & Harrell, R.A. Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol. Biol. 8, 449–458 (1999).

    Article  CAS  Google Scholar 

  12. Spradling, A.C. P-element-mediated transformation. in Drosophila: A Practical Approach (ed. Roberts, D.B.) 175–197, (IRL Press, Oxford, UK, 1986).

    Google Scholar 

  13. Hartl, D.L. & Ochman, H. Inverse polymerase chain reaction. Methods Mol. Biol. 58, 293–301 (1996).

    CAS  PubMed  Google Scholar 

  14. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  15. Mullins, M.C., Rio, D.C. & Rubin, G.M. Cis-acting DNA sequence requirements for P-element transposition. Genes Dev. 3, 729–738 (1989).

    Article  CAS  Google Scholar 

  16. Cui, Z., Geurts, A.M., Liu, G., Kaufman, C.D. & Hackett, P.B. Structure-function analysis of the inverted terminal repeats of the Sleeping Beauty transposon. J. Mol. Biol. 318, 1221–1235 (2002).

    Article  CAS  Google Scholar 

  17. Li, X., Lobo, N., Bauser, C.A. & Fraser, M.J. Jr. The minimum internal and external sequence requirements for transposition of the eukaryotic transformation vector piggyBac. Mol. Genet. Genomics 266, 190–198 (2001).

    Article  CAS  Google Scholar 

  18. Neuhaus, M.J. Additional data on crossing over between X and Y chromosomes in Drosophila melanogaster. Genetics 22, 333–339 (1937).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rong, Y.S. & Golic, K.G. Site-specific recombination for the genetic manipulation of transgenic insects. in Insect Transgenesis: Methods and Applications (eds. Handler, A.M. & James, A.A.) 53–75, (CRC Press, Boca Raton, FL, 2000).

    Chapter  Google Scholar 

  20. Lozovsky, E.R., Nurminsky, D., Wimmer, E.A. & Hartl, D.L. Unexpected stability of mariner transgenes in Drosophila. Genetics 160, 527–535 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoy, M.A. Deploying transgenic arthropods in pest management programs: risks and realities. in Insect Transgenesis: Methods and Applications (eds. Handler, A.M. & James, A.A.) 335–368, (CRC Press, Boca Raton, FL, 2000).

    Google Scholar 

  22. Sundararajan, P., Atkinson, P.W. & O'Brochta, D.A. Transposable element interactions in insects: crossmobilization of hobo and Hermes. Insect Mol. Biol. 8, 359–368 (1999).

    Article  CAS  Google Scholar 

  23. O'Brochta, D.A. & Atkinson, P.W. Transposable elements and gene transformation in non-drosophilid insects. Insect Biochem. Mol. Biol. 26, 739–753 (1996).

    Article  CAS  Google Scholar 

  24. Hartl, D.L., Lohe, A.R. & Lozovskaya, E.R. Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu. Rev. Genet. 31, 337–358 (1997).

    Article  CAS  Google Scholar 

  25. Robertson, H.M. & Lampe, D.J. Distribution of transposable elements in arthropods. Annu. Rev. Entomol. 40, 333–357 (1995).

    Article  CAS  Google Scholar 

  26. Bushman, F . Lateral DNA Transfer (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2002).

    Google Scholar 

  27. Handler, A.M. & McCombs, S.D. The piggyBac transposon mediates germ-line transformation in the Oriental fruit fly and closely related elements exist in its genome. Insect Mol. Biol. 9, 605–612 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Grateful appreciation is extended to Rod Nagoshi for discussions on the development of stabilization vectors and to the US Department of Agriculture–National Research Initiative Competitive Grants Program for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred M Handler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handler, A., Zimowska, G. & Horn, C. Post-integration stabilization of a transposon vector by terminal sequence deletion in Drosophila melanogaster. Nat Biotechnol 22, 1150–1154 (2004). https://doi.org/10.1038/nbt1002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1002

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing