Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proteomic analysis of post-translational modifications

Abstract

Post-translational modifications modulate the activity of most eukaryote proteins. Analysis of these modifications presents formidable challenges but their determination generates indispensable insight into biological function. Strategies developed to characterize individual proteins are now systematically applied to protein populations. The combination of function- or structure-based purification of modified 'subproteomes', such as phosphorylated proteins or modified membrane proteins, with mass spectrometry is proving particularly successful. To map modification sites in molecular detail, novel mass spectrometric peptide sequencing and analysis technologies hold tremendous potential. Finally, stable isotope labeling strategies in combination with mass spectrometry have been applied successfully to study the dynamics of modifications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for mapping post-translational modifications.
Figure 2: Determination of a glycosylation site by FTMS and ECD.
Figure 3: Analysis of the phosphoproteome.

References

  1. Cohen, P. The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem. Sci. 25, 596–601 (2000).

    Article  CAS  Google Scholar 

  2. Tyers, M. & Jorgensen, P. Proteolysis and the cell cycle: with this RING I do thee destroy. Curr. Opin. Genet. Dev. 10, 54–64 (2000).

    Article  CAS  Google Scholar 

  3. Carr, S.A. et al. Protein and carbohydrate structural analysis of a recombinant soluble CD4 receptor by mass spectrometry. J. Biol. Chem. 264, 21286–21295 (1989).

    CAS  PubMed  Google Scholar 

  4. Ling, V. et al. Characterization of the tryptic map of recombinant DNA-derived tissue plasminogen activator by high-performance liquid chromatography–electrospray ionization mass spectrometry. Anal. Chem. 63, 2909–2915 (1991).

    Article  CAS  Google Scholar 

  5. Roepstorff, P. Mass spectrometry in protein studies from genome to function. Curr. Opin. Biotechnol. 8, 6–13 (1997).

    Article  CAS  Google Scholar 

  6. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature, in press (2003).

  7. Jensen, O.N. Modification-specific proteomics: strategies for systematic studies of post-translationally modified proteins. in Proteomics: A Trends Guide (eds. Blackstock, W. & Mann, M.) 36–42 (Elsevier Science, London; 2000).

    Google Scholar 

  8. McLachlin, D.T. & Chait, B.T. Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr. Opin. Chem. Biol. 5, 591–602 (2001).

    Article  CAS  Google Scholar 

  9. Sickmann, A. & Meyer, H.E. Phosphoamino acid analysis. Proteomics 1, 200–206 (2001).

    Article  CAS  Google Scholar 

  10. Mann, M. et al. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 20, 261–268 (2002).

    Article  CAS  Google Scholar 

  11. Loughrey Chen, S. et al. Mass spectrometry-based methods for phosphorylation site mapping of hyperphosphorylated proteins applied to Net1, a regulator of exit from mitosis in yeast. Mol. Cell Proteomics 1, 186–196 (2002).

    Article  Google Scholar 

  12. Gorg, A. et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–1053 (2000).

    Article  CAS  Google Scholar 

  13. Rabilloud, T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2, 3–10 (2002).

    Article  CAS  Google Scholar 

  14. Fey, S.J. & Larsen, P.M. 2D or not 2D. Two-dimensional gel electrophoresis. Curr. Opin. Chem. Biol. 5, 26–33 (2001).

    Article  CAS  Google Scholar 

  15. Larsen, M.R., Larsen, P.M., Fey, S.J. & Roepstorff, P. Characterization of differently processed forms of enolase 2 from Saccharomyces cerevisiae by two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis 22, 566–575 (2001).

    Article  CAS  Google Scholar 

  16. Knebel, A., Morrice, N. & Cohen, P. A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38δ. EMBO J. 20, 4360–4369 (2001).

    Article  CAS  Google Scholar 

  17. MacDonald, J.A., Mackey, A.J., Pearson, W.R. & Haystead, T.A. A strategy for the rapid identification of phosphorylation sites in the phosphoproteome. Mol. Cell Proteomics 1, 314–322 (2002).

    Article  CAS  Google Scholar 

  18. Covey, T.R., Shushan, B.I., Bonner, R., Schroder, W. & Hucho, F. LC/MS and LC/MS/MS screening for the sites of post-translational modifications in proteins. in Methods in Protein Sequence Analysis (eds Jörnvall, H., Höög, J.O. & Gustavsson, A.M.). 249–256 (Birkhäuser Verlag, Basel, 1991).

    Chapter  Google Scholar 

  19. Bateman, R.H. et al. A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J. Am. Soc. Mass Spectrom. 13, 792–803 (2002).

    Article  CAS  Google Scholar 

  20. Wilm, M., Neubauer, G. & Mann, M. Parent ion scans of unseparated peptide mixtures. Anal. Chem. 68, 527–533 (1996).

    Article  CAS  Google Scholar 

  21. Carr, S.A., Huddleston, M.J. & Annan, R.S. Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal. Biochem. 239, 180–192 (1996).

    Article  CAS  Google Scholar 

  22. Steen, H., Kuster, B., Fernandez, M., Pandey, A. & Mann, M. Detection of tyrosine-phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. Anal. Chem. 73, 1440–1448 (2001).

    Article  CAS  Google Scholar 

  23. Steen, H., Kuster, B., Fernandez, M., Pandey, A. & Mann, M. Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J. Biol. Chem. 277, 1031–1039 (2002).

    Article  CAS  Google Scholar 

  24. Hinsby, A.M., Olsen, J.V., Bennett, K.L. & Mann, M. Signaling initiated by overexpression of the fibroblast growth factor receptor-1 investigated by mass spectrometry. Mol. Cell. Proteomics, in press (2003).

  25. Mann, M. & Wilm, M.S. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66, 4390–4399 (1994).

    Article  CAS  Google Scholar 

  26. Eng, J.K., McCormack, A.L. & Yates, J.R.I. An approach to correlate MS/MS data to amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  Google Scholar 

  27. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  Google Scholar 

  28. MacCoss, M.J., Wu, C.C. & Yates, J.R. Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal. Chem. 74, 5593–5599 (2002).

    Article  CAS  Google Scholar 

  29. Creasy, D.M. & Cottrell, J.S. Error-tolerant searching of uninterpreted tandem mass spectrometry data. Proteomics 2, 1426–1434 (2002).

    Article  CAS  Google Scholar 

  30. Marshall, A.G., Hendrickson, C.L. & Jackson, G.S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998).

    Article  CAS  Google Scholar 

  31. Martin, S.E., Shabanowitz, J., Hunt, D.F. & Marto, J.A. Subfemtomole MS and MS/MS peptide sequence analysis using nano-HPLC micro-ESI Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 72, 4266–4274 (2000).

    Article  CAS  Google Scholar 

  32. Zubarev, R.A. et al. Electron-capture dissociation for structural characterization of multiply charged protein cations. Anal. Chem. 72, 563–573 (2000).

    Article  CAS  Google Scholar 

  33. Stensballe, A., Jensen, O.N., Olsen, J.V., Haselmann, K.F. & Zubarev, R.A. Electron-capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun. Mass Spectrom. 14, 1793–1800 (2000).

    Article  CAS  Google Scholar 

  34. Shi, S.D. et al. Phosphopeptide/phosphoprotein mapping by electron-capture dissociation mass spectrometry. Anal. Chem. 73, 19–22 (2001).

    Article  CAS  Google Scholar 

  35. Kelleher, N.L. et al. Localization of labile posttranslational modifications by electron-capture dissociation: the case of γ-carboxyglutamic acid. Anal. Chem. 71, 4250–4253 (1999).

    Article  CAS  Google Scholar 

  36. Kjeldsen, F., Haselmann, K.F., Budnik, B.A., Soerensen, E.S. & Zubarev, R.A. Complete characterization of post-translational modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron-capture dissociation as the last stage. Anal. Chem., in press (2003).

  37. Sze, S.K., Ge, Y., Oh, H. & McLafferty, F.W. Top-down mass spectrometry of a 29-kDa protein for characterization of any posttranslational modification to within one residue. Proc. Natl. Acad. Sci. USA 99, 1774–1779 (2002).

    Article  CAS  Google Scholar 

  38. Soskic, V., Gorlach, M., Poznanovic, S., Boehmer, F.D. & Godovac-Zimmermann, J. Functional proteomics analysis of signal transduction pathways of the platelet-derived growth factor-β receptor. Biochemistry 38, 1757–1764 (1999).

    Article  CAS  Google Scholar 

  39. Yamagata, A. et al. Mapping of phosphorylated proteins on two-dimensional polyacrylamide gels using protein phosphatase. Proteomics 2, 1267–1276 (2002).

    Article  CAS  Google Scholar 

  40. Stensballe, A., Andersen, S. & Jensen, O.N. Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(iii) affinity chromatography with off-line mass spectrometry analysis. Proteomics 1, 207–222 (2001).

    Article  CAS  Google Scholar 

  41. Pandey, A. et al. Analysis of receptor signaling pathways by mass spectrometry: identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl. Acad. Sci. USA 97, 179–184 (2000).

    Article  CAS  Google Scholar 

  42. Gronborg, M. et al. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol. Cell. Proteomics 1, 517–527 (2002).

    Article  CAS  Google Scholar 

  43. Peng, J. & Gygi, S.P. Proteomics: the move to mixtures. J. Mass Spectrom. 36, 1083–1091 (2001).

    Article  CAS  Google Scholar 

  44. MacCoss, M.J. et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl. Acad. Sci. USA 99, 7900–7905 (2002).

    Article  CAS  Google Scholar 

  45. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  Google Scholar 

  46. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  Google Scholar 

  47. Andersson, L. & Porath, J. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal. Biochem. 154, 250–254 (1986).

    Article  CAS  Google Scholar 

  48. Posewitz, M.C. & Tempst, P. Immobilized gallium(iii) affinity chromatography of phosphopeptides. Anal. Chem. 71, 2883–2892 (1999).

    Article  CAS  Google Scholar 

  49. Ficarro, S.B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305 (2002).

    Article  CAS  Google Scholar 

  50. Salomon, A.R. et al. Profiling of tyrosine-phosphorylation pathways in human cells using mass spectrometry. Proc. Natl. Acad. Sci. USA 100, 443–448 (2003).

    Article  CAS  Google Scholar 

  51. Zhou, H., Watts, J.D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378 (2001).

    Article  CAS  Google Scholar 

  52. Oda, Y., Nagasu, T. & Chait, B.T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379–382 (2001).

    Article  CAS  Google Scholar 

  53. Steen, H. & Mann, M. A new derivatization strategy for the analysis of phosphopeptides by precursor ion scanning in positive ion mode. J. Am. Soc. Mass Spectrom. 13, 996–1003 (2002).

    Article  CAS  Google Scholar 

  54. Medzihradszky, K.F. et al. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 72, 552–558 (2000).

    Article  CAS  Google Scholar 

  55. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    Article  CAS  Google Scholar 

  56. Oda, Y., Huang, K., Cross, F.R., Cowburn, D. & Chait, B.T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl Acad. Sci. USA 96, 6591–6596 (1999).

    Article  CAS  Google Scholar 

  57. Stemmann, O., Zou, H., Gerber, S.A., Gygi, S.P. & Kirschner, M.W. Dual inhibition of sister chromatid separation at metaphase. Cell 107, 715–726 (2001).

    Article  CAS  Google Scholar 

  58. Ong, S.E., Kratchmarova, I. & Mann, M. Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res., in press (2003).

  59. Blagoev, B. et al. A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nat. Biotechnol. 21, 315–318 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Zubarev, Uppsala University, for providing Figure 2. Work in the authors' laboratories is supported by a generous grant of the Danish National Research Foundation (M.M.) and the Danish Natural Sciences Research Council (O.N.J.) and infrastructure provided by the Danish Biotechnology Instrument Center(M.M. and O.N.J.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, M., Jensen, O. Proteomic analysis of post-translational modifications. Nat Biotechnol 21, 255–261 (2003). https://doi.org/10.1038/nbt0303-255

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0303-255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing