Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lipopeptide detergents designed for the structural study of membrane proteins

Abstract

The structural study of membrane proteins requires detergents that can effectively mimic lipid bilayers, and the choice of detergent is often a compromise between detergents that promote protein stability and detergents that form small micelles. We describe lipopeptide detergents (LPDs), a new class of amphiphile consisting of a peptide scaffold that supports two alkyl chains, one anchored to each end of an α-helix. The goal was to design a molecule that could self-assemble into a cylindrical micelle with a rigid outer hydrophilic shell surrounding an inner lipidic core. Consistent with this design, LPDs self-assemble into small micelles, can disperse phospholipid membranes, and are gentle, nondenaturing detergents that preserve the structure of the membrane proteins in solution for extended periods of time. The LPD design allows for a membrane-like packing of the alkyl chains in the core of the molecular assemblies, possibly explaining their superior properties relative to traditional detergents in stabilizing membrane protein structures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of lipopeptide detergents.
Figure 2: Self-association of LPDs.
Figure 3: LPDs can disperse phosphatidylcholine liposomes.
Figure 4: LPDs are effective at main-taining membrane proteins in solution.
Figure 5: Representation of a proposed protein-lipopeptide detergent complex.

Similar content being viewed by others

References

  1. Michel, H. General and practical aspects of membrane protein crystallization. in Crystallization of Membrane Proteins (ed. Michel, H.) 73–88 (CRC Press, Boca Raton, FL, 1991).

    Google Scholar 

  2. Michel, H. Crystallization of membrane proteins. in International Tables for Crystallography Volume F (eds. Rossmann, M. & Arnold, E.) 94–100 (Kluwer Academic Publishers, Dordrecht, 2001).

    Google Scholar 

  3. MacKenzie, K.R., Prestegard, J.H. & Engelman, D.M. A transmembrane helix dimer: structure and implications. Science 276, 131–133 (1997).

    Article  CAS  Google Scholar 

  4. Arora, A., Abildgaard, F., Bushweller, J.H. & Tamm, L.K. Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat. Struct. Biol. 8, 334–338 (2001).

    Article  CAS  Google Scholar 

  5. Fernandez, C. et al. Solution NMR studies of the integral membrane proteins OmpX and OmpA from Escherichia coli. FEBS Lett. 504, 173–178 (2001).

    Article  CAS  Google Scholar 

  6. Hwang, P.M. et al. Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc. Natl. Acad. Sci. USA 99, 13560–13565 (2002).

    Article  CAS  Google Scholar 

  7. Garavito, R.M. & Ferguson-Miller, S. Detergents as tools in membrane biochemistry. J. Biol. Chem. 276, 32403–32406 (2001).

    Article  CAS  Google Scholar 

  8. Engel, C.K., Chen, L. & Privé, G.G. Stability of the lactose permease in detergent solutions. Biochem. Biophys. Acta 1564, 47–56 (2002).

    Article  CAS  Google Scholar 

  9. Boulter, J.M. & Wang, D.N. Purification and characterization of human erythrocyte glucose transporter in decylmaltoside detergent solution. Protein Expr. Purif. 22, 337–348 (2001).

    Article  CAS  Google Scholar 

  10. Bowie, J.U. Stabilizing membrane proteins. Curr. Opin. Struct. Biol. 11, 397–402 (2001).

    Article  CAS  Google Scholar 

  11. Casey, J.R. & Reithmeier, R.A. Detergent interaction with band 3, a model polytopic membrane protein. Biochemistry 32, 1172–1179 (1993).

    Article  CAS  Google Scholar 

  12. le Maire, M., Champeil, P. & Moller, J.V. Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta 1508, 86–111 (2000).

    Article  CAS  Google Scholar 

  13. Chakrabartty, A., Kortemme, T. & Baldwin, R.L. Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Sci. 3, 843–852 (1994).

    Article  CAS  Google Scholar 

  14. Marqusee, S. & Baldwin, R.L. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc. Natl. Acad. Sci. USA 84, 8898–8902 (1987).

    Article  CAS  Google Scholar 

  15. Doig, A.J., Chakrabartty, A., Klingler, T.M. & Baldwin, R.L. Determination of free energies of N-capping in α-helices by modification of the Lifson–Roig helix-coil therapy to include N- and C-capping. Biochemistry 33, 3396–3403 (1994).

    Article  CAS  Google Scholar 

  16. Schafmeister, C.E., Miercke, L.J. & Stroud, R.M. Structure at 2.5 Å of a designed peptide that maintains solubility of membrane proteins. Science 262, 734–738 (1993).

    Article  CAS  Google Scholar 

  17. Dill, K.A. & Flory, P.J. Molecular organization in micelles and vesicles. Proc. Natl. Acad. Sci. USA 78, 676–680 (1981).

    Article  CAS  Google Scholar 

  18. Bogusz, S., Venable, R.M. & Pastor, R.W. Molecular dynamics simulations of octyl glucoside micelles: structural properties. J. Phys. Chem. B 104, 5462–5470 (2000).

    Article  CAS  Google Scholar 

  19. Tieleman, D.P., van der Spoel, D. & Berendsen, H.J.C. Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: micellar structure and chain relaxation. J. Phys. Chem. B 104, 6380–6388 (2000).

    Article  CAS  Google Scholar 

  20. D'Aprano, A. et al. QELS and SANS studies of octyl-β-glucoside micellar solutions. J. Mol. Struc. 383, 177–182 (1996).

    Article  CAS  Google Scholar 

  21. Lorber, B., Bishop, J.B. & DeLucas, L.J. Purification of octyl β-D-glucopyranoside and re-estimation of its micellar size. Biochim. Biophys. Acta 1023, 254–265 (1990).

    Article  CAS  Google Scholar 

  22. Lauterwein, J., Bosch, C., Brown, L.R. & Wuthrich, K. Physicochemical studies of the protein–lipid interactions in melittin-containing micelles. Biochim. Biophys. Acta 556, 244–264 (1979).

    Article  CAS  Google Scholar 

  23. Zhou, Y., Lau, F.W., Nauli, S., Yang, D. & Bowie, J.U. Inactivation mechanism of the membrane protein diacylglycerol kinase in detergent solution. Protein Sci. 10, 378–383 (2001).

    Article  CAS  Google Scholar 

  24. Rosevear, P., VanAken, T., Baxter, J. & Ferguson-Miller, S. Alkyl glycoside detergents: a simpler synthesis and their effects on kinetic and physical properties of cytochrome c oxidase. Biochemistry 19, 4108–4115 (1980).

    Article  CAS  Google Scholar 

  25. Zhou, Y. & Bowie, J.U. Building a thermostable membrane protein. J. Biol. Chem. 275, 6975–6979 (2000).

    Article  CAS  Google Scholar 

  26. le Coutre, J. & Kaback, H.K. Structure–function relationships of integral membrane proteins: membrane transporters vs channels. Biopolymers 55, 297–307 (2000).

    Article  CAS  Google Scholar 

  27. Kaback, H.R., Sahin-Toth, M. & Weinglass, A.B. The kamikaze approach to membrane transport. Nat. Rev. Mol. Cell Biol. 2, 610–620 (2001).

    Article  CAS  Google Scholar 

  28. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).

    Article  CAS  Google Scholar 

  29. Chang, G. & Roth, C.B. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science 293, 1793–1800 (2001).

    Article  CAS  Google Scholar 

  30. Chang, G., Spencer, R.H., Lee, A.T., Barclay, M.T. & Rees, D.C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998).

    Article  CAS  Google Scholar 

  31. Gennis, R.B. Biomembranes: Molecular Structure and Function (Springer-Verlag, New York, 1989).

    Book  Google Scholar 

  32. Hjelmeland, L.M. A nondenaturing zwitterionic detergent for membrane biochemistry: design and synthesis. Proc. Natl. Acad. Sci. USA 77, 6368–6370 (1980).

    Article  CAS  Google Scholar 

  33. Tribet, C., Audebert, R. & Popot, J.L. Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc. Natl. Acad. Sci. USA 93, 15047–15050 (1996).

    Article  CAS  Google Scholar 

  34. Walker, S. et al. Cationic facial amphiphiles: a promising class of transfection agents. Proc. Natl. Acad. Sci. USA 93, 1585–1590 (1996).

    Article  CAS  Google Scholar 

  35. Yu, S.M. et al. An improved tripod amphiphile for membrane protein solubilization. Protein Sci. 9, 2518–2527 (2000).

    Article  CAS  Google Scholar 

  36. Edelstein, S.J. & Schachman, H.K. The simultaneous determination of partial specific volumes and molecular weights with microgram quantities. J. Biol. Chem. 242, 306–311 (1967).

    CAS  PubMed  Google Scholar 

  37. Edelstein, S.J. & Schachman, H.K. Measurement of partial specific volume by sedimentation equilibrium in H2O-D2O solutions. Methods Enzymol. 27, 82–98 (1973).

    Article  CAS  Google Scholar 

  38. Ames, B. Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol. 8, 115–118 (1966).

    Article  CAS  Google Scholar 

  39. Landau, E.M. & Rosenbusch, J.P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA 93, 14532–14535 (1996).

    Article  CAS  Google Scholar 

  40. Engel, C.K., Chen, L. & Privé, G.G. Insertion of carrier proteins into hydrophilic loops of the Escherichia coli lactose permease. Biochem. Biophys. Acta 1564, 38–46 (2002).

    Article  CAS  Google Scholar 

  41. Pervushin, K., Riek, R., Wider, G. & Wuthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  Google Scholar 

  42. Peng, J.W. & Wagner, G. Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J. Magn. Reson. 98, 308–322 (1992).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Canadian Institutes of Health Research to G.G.P., and an NSERC scholarship to C.M. We thank Janos Lanyi and Thomas Richter for assistance and materials relating to the bacteriorhodopsin preparation; Christian Engel, Reinhart Reithmeier, and Peter Tieleman for helpful discussions; Lewis Kay for help with the NMR experiments; Heman Chao and Greg Hermanson for reagents; Russel Bishop for the PagP expression vector; and Vincent Lin, Linda Wu, and Alexandre Ménard for technical assistance in the early stages of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert G. Privé.

Ethics declarations

Competing interests

L.C., N.C.P., S.G., A.C., and G.G.P. are employed by the University Health Network (Toronto, ON, Canada), which has applied to patent the technology described in this manuscript under an application entitled “Peptide conjugates for the stabilization of membrane proteins and interactions with biological membranes.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGregor, CL., Chen, L., Pomroy, N. et al. Lipopeptide detergents designed for the structural study of membrane proteins. Nat Biotechnol 21, 171–176 (2003). https://doi.org/10.1038/nbt776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt776

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing