Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cloned transgenic cattle produce milk with higher levels of β-casein and κ-casein

Abstract

To enhance milk composition and milk processing efficiency by increasing the casein concentration in milk, we have introduced additional copies of the genes encoding bovine β- and κ-casein (CSN2 and CSN3, respectively) into female bovine fibroblasts. Nuclear transfer with four independent donor cell lines resulted in the production of 11 transgenic calves. The analysis of hormonally induced milk showed substantial expression and secretion of the transgene-derived caseins into milk. Nine cows, representing two high-expressing lines, produced milk with an 8–20% increase in β-casein, a twofold increase in κ-casein levels, and a markedly altered κ-casein to total casein ratio. These results show that it is feasible to substantially alter a major component of milk in high producing dairy cows by a transgenic approach and thus to improve the functional properties of dairy milk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the bovine CSN2 and CSN2/3 transgene constructs.
Figure 2: Southern blot analysis of transgenic cattle.
Figure 3: Expression of bovine β- and κ-casein in the milk of transgenic cows.

Similar content being viewed by others

References

  1. Holt, C. & Horne, D.S. The hairy casein micelle: evolution of the concept and its implication for dairy technology. Neth. Milk Dairy J. 50, 85–111 (1996).

    CAS  Google Scholar 

  2. Dalgleish, D.G., Horne, D.S. & Law, A.J.R. Size-related differences in bovine casein micelles. Biochim. Biophys. Acta 991, 383–387 (1989).

    Article  CAS  Google Scholar 

  3. Jimenez Flores, R. & Richardson, T. Genetic engineering of the caseins to modify the behavior of milk during processing: a review. J. Dairy Sci. 71, 2640–2654 (1988).

    Article  CAS  Google Scholar 

  4. Swaisgood, H.E. Chemistry of the caseins. in Advanced Dairy Chemistry, vol. 1 (ed. Fox, P.F.) 63–110 (Elsevier Applied Science, London, 1992).

    Google Scholar 

  5. Hammer, R.E. et al. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315, 680–683 (1985).

    Article  CAS  Google Scholar 

  6. Wall, R.J., Kerr, D.E. & Bondioli, K.R. Transgenic dairy cattle: genetic engineering on a large scale. J. Dairy Sci. 80, 2213–2224 (1997).

    Article  CAS  Google Scholar 

  7. Wall, R.J. Transgenic livestock: progress and prospects for the future. Theriogenology 45, 57–68 (1996).

    Article  Google Scholar 

  8. Eyestone, W.H. Challenges and progress in the production of transgenic cattle. Reprod. Fertil. Dev. 6, 647–652 (1994).

    Article  CAS  Google Scholar 

  9. Krimpenfort, P. et al. Generation of transgenic dairy cattle using 'in vitro' embryo production. Biotechnology (NY) 9, 844–847 (1991).

    CAS  PubMed  Google Scholar 

  10. Simons, J.P. et al. Gene transfer into sheep. Bio/technology 6, 179–183 (1988).

    CAS  Google Scholar 

  11. Persuy, M.A., Stinnakre, M.G., Printz, C., Mahe, M.F. & Mercier, J.C. High expression of the caprine β-casein gene in transgenic mice. Eur. J. Biochem. 205, 887–893 (1992).

    Article  CAS  Google Scholar 

  12. Rijnkels, M., Kooiman, P.M., Krimpenfort, P.J., de Boer, H.A. & Pieper, F.R. Expression analysis of the individual bovine β-, αs2- and κ-casein genes in transgenic mice. Biochem. J. 311 (Pt. 3), 929–937 (1995).

    Article  Google Scholar 

  13. Ninomiya, T., Hirabayashi, M., Sagara, J. & Yuki, A. Functions of milk protein gene 5′ flanking regions on human growth hormone gene. Mol. Reprod. Dev. 37, 276–283 (1994).

    Article  CAS  Google Scholar 

  14. Persuy, M.A. et al. High-level, stage- and mammary-tissue-specific expression of a caprine κ-casein-encoding minigene driven by a β-casein promoter in transgenic mice. Gene 165, 291–296 (1995).

    Article  CAS  Google Scholar 

  15. Gutierrez, A. et al. Expression of a bovine κ-CN cDNA in the mammary gland of transgenic mice utilizing a genomic milk protein gene as an expression cassette. Transgenic Res. 5, 271–279 (1996).

    Article  CAS  Google Scholar 

  16. Hiripi, L. et al. Effect of rabbit κ-casein expression on the properties of milk from transgenic mice. J. Dairy Res. 67, 541–550 (2000).

    Article  CAS  Google Scholar 

  17. Gutierrez-Adan, A. et al. Alterations of the physical characteristics of milk from transgenic mice producing bovine κ-casein. J. Dairy Sci. 79, 791–799 (1996).

    Article  CAS  Google Scholar 

  18. Hitchin, E., Stevenson, E.M., Clark, A.J., McClenaghan, M. & Leaver, J. Bovine β-casein expressed in transgenic mouse milk is phosphorylated and incorporated into micelles. Protein Expr. Purif. 7, 247–252 (1996).

    Article  CAS  Google Scholar 

  19. Colman, A. Production of proteins in the milk of transgenic livestock: problems, solutions, and successes. Am. J. Clin. Nutr. 63, 639S–645S (1996).

    Article  CAS  Google Scholar 

  20. Rosen, J.M., Li, S., Raught, B. & Hadsell, D. The mammary gland as a bioreactor: factors regulating the efficient expression of milk protein-based transgenes. Am. J. Clin. Nutr. 63, 627S–632S (1996).

    Article  CAS  Google Scholar 

  21. Bawden, W.S., Passey, R.J. & Mackinlay, A.G. The genes encoding the major milk-specific proteins and their use in transgenic studies and protein engineering. Biotechnol. Genet. Eng. Rev. 12, 89–137 (1994).

    Article  CAS  Google Scholar 

  22. Schnieke, A.E. et al. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278, 2130–2133 (1997).

    Article  CAS  Google Scholar 

  23. Cibelli, J.B. et al. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256–1258 (1998).

    Article  CAS  Google Scholar 

  24. Denicourt, D., Sabour, M.P. & McAllister, A.J. Detection of bovine κ-casein genomic variants by the polymerase chain reaction method. Anim. Genet. 21, 215–216 (1990).

    Article  CAS  Google Scholar 

  25. Bonsing, J., Ring, J.M., Stewart, A.F. & Mackinlay, A.G. Complete nucleotide sequence of the bovine β-casein gene. Aust. J. Biol. Sci. 41, 527–537 (1988).

    Article  CAS  Google Scholar 

  26. Alexander, L.J. et al. Isolation and characterization of the bovine κ-casein gene. Eur. J. Biochem. 178, 395–401 (1988).

    Article  CAS  Google Scholar 

  27. Heyman, Y. et al. Novel approaches and hurdles to somatic cloning in cattle. Cloning Stem Cells 4, 47–55 (2002).

    Article  CAS  Google Scholar 

  28. Zakhartchenko, V. et al. Nuclear transfer in cattle with non-transfected and transfected fetal or cloned transgenic fetal and postnatal fibroblasts. Mol. Reprod. Dev. 60, 362–369 (2001).

    Article  CAS  Google Scholar 

  29. Hill, J.R. et al. Clinical and pathologic features of cloned transgenic calves and fetuses (13 case studies). Theriogenology 51, 1451–1465 (1999).

    Article  CAS  Google Scholar 

  30. Perucho, M., Hanahan, D. & Wigler, M. Genetic and physical linkage of exogenous sequences in transformed cells. Cell 22, 309–317 (1980).

    Article  CAS  Google Scholar 

  31. Chrenek, P. et al. Sexing and multiple genotype analysis from a single cell of bovine embryo. Theriogenology 55, 1071–1081 (2001).

    Article  CAS  Google Scholar 

  32. Galli, C. et al. Embryo production by ovum pick up from live donors. Theriogenology 55, 1341–1357 (2001).

    Article  CAS  Google Scholar 

  33. Wilde, C.J. et al. Mammary development and milk secretion in transgenic mice expressing the sheep β-lactoglobulin gene. Biochem. J. 284 (Pt. 3), 717–720 (1992).

    Article  CAS  Google Scholar 

  34. McClenaghan, M., Springbett, A., Wallace, R.M., Wilde, C.J. & Clark, A.J. Secretory proteins compete for production in the mammary gland of transgenic mice. Biochem. J. 310 (Pt. 2), 637–641 (1995).

    Article  CAS  Google Scholar 

  35. Karatzas, C.N. & Turner, J.D. Toward altering milk composition by genetic manipulation: current status and challenges. J. Dairy Sci. 80, 2225–2232 (1997).

    Article  CAS  Google Scholar 

  36. Aigner, B., Fleischmann, M., Muller, M. & Brem, G. Stable long-term germ-line transmission of transgene integration sites in mice. Transgenic Res. 8, 1–8 (1999).

    Article  CAS  Google Scholar 

  37. McLaren, R.D., Auldist, M.J., Prosser, C.G. & Elvidge, D.G. Diurnal variation in the protein composition of bovine milk. Proc. NZ Soc. Anim. Prod. 58, 49–51 (1998).

    Google Scholar 

  38. Ball, S., Polson, K., Emeny, J., Eyestone, W. & Akers, R.M. Induced lactation in prepubertal Holstein heifers. J. Dairy Sci. 83, 2459–2463 (2000).

    Article  CAS  Google Scholar 

  39. van Berkel, P.H. et al. Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat. Biotechnol. 20, 484–487 (2002).

    Article  CAS  Google Scholar 

  40. Ribadeau, D.B., Grosclaude, F. & Mercier, J.C. [Localization in the peptide chain of bovine β casein of the His-Gln substitution differentiating the A2 and A3 genetic variants]. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D. 270, 2369–2372 (1970).

    Google Scholar 

  41. Picard, V., Ersdal-Badju, E., Lu, A. & Bock, S.C. A rapid and efficient one-tube PCR-based mutagenesis technique using Pfu DNA polymerase. Nucleic Acids Res. 22, 2587–2591 (1994).

    Article  CAS  Google Scholar 

  42. de la Luna, S., Soria, I., Pulido, D., Ortin, J. & Jimenez, A. Efficient transformation of mammalian cells with constructs containing a puromycin-resistance marker. Gene 62, 121–126 (1988).

    Article  CAS  Google Scholar 

  43. Spiess, M. & Beuret, N. PCR-directed in vitro mutagenesis using a 'temporary' restriction site. Technical Tips Online 1, T01388 (http://research.bmn.com/tto, 1998).

  44. Wells, D.N., Misica, P.M. & Tervit, H.R. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol. Reprod. 60, 996–1005 (1999).

    Article  CAS  Google Scholar 

  45. Wrenzycki, C. et al. Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts. Biol. Reprod. 65, 309–317 (2001).

    Article  CAS  Google Scholar 

  46. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  47. Prosser, C.G. & Collin, R.G. Improved assays for milk proteins. Aust. J. Dairy Technol. 56, 184 (2001).

    Google Scholar 

Download references

Acknowledgements

We thank Andria Miller, Jan Oliver, and Fleur Tucker for assistance with NT; Jacqui Forsyth, Martin Berg, Katie Cockrem, Vicki McMillan, Aaron Malthus, and Tim Hale for dedicated animal husbandry; Hilda Troskie, Anne Pugh, and Bridget Peachy for in vitro embryo production and biopsy; Craig Smith and Wilhelmina Martin for milk analysis; Bill Jordan, Jenny Hudson (Victoria University of Wellington), Janine Cooney, and Dwayne Jensen, (HortResearch), for MS; and Harold Henderson for assistance with statistical analysis. Supported by the Foundation for Research, Science, and Technology, New Zealand and by AgResearch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Götz Laible.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brophy, B., Smolenski, G., Wheeler, T. et al. Cloned transgenic cattle produce milk with higher levels of β-casein and κ-casein. Nat Biotechnol 21, 157–162 (2003). https://doi.org/10.1038/nbt783

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt783

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing