Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Near-field optics: from subwavelength illumination to nanometric shadowing

Abstract

Near-field optics uniquely addresses problems of x, y and z resolution by spatially confining the effect of a light source to nanometric domains. The problems in using far-field optics (conventional optical imaging through a lens) to achieve nanometric spatial resolution are formidable. Near-field optics serves a bridging role in biology between optical imaging and scanned probe microscopy. The integration of near-field and scanned probe imaging with far-field optics thus holds promise for solving the so-called inverse problem of optical imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of microscopic imaging.
Figure 2: A comparison of optical imaging approaches to reduce out-of-focus light and diffraction-induced reduction in resolution.
Figure 3: A flowering of probes and modes.
Figure 4: Images of yeast obtained in three modes of operation.
Figure 5: Neuronal calcium effusion with caffeine excitation.
Figure 6: Shadow NSOM results.
Figure 7: Instrumentation of SPM and NSOM systems.

Similar content being viewed by others

References

  1. Lewis, A. Isaacson, M. Harootunian, A. & Muray, A. Development of a 500-Å spatial-resolution light-microscope. Biophys. J. 41, 405–406 (1983).

    Google Scholar 

  2. Lewis, A. Isaacson, M., Harootunian, A. & Muray, A. Development of a 500-Å spatial-resolution light-microscope. 1. Light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy 13, 227–231 (1984).

    Article  Google Scholar 

  3. Pohl, D.W., Denk, W. & Lanz, M. Optical stethoscopy: image recording with a resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984).

    Article  Google Scholar 

  4. Bouevich, O. Lewis, A. Pinnevsky, I. & Loew, L. Probing membrane potential with non-linear optics. Biophys. J. 65, 672–682 (1993).

    Article  Google Scholar 

  5. Lewis, A. et al. Second harmonic generation of biological interfaces: probing membrane proteins and imaging membrane potential around GFP molecules at specific sites in neuronal cells of C. elegans. Chem. Physics 245, 133–144 (1999).

    Article  CAS  Google Scholar 

  6. Harootunian, A. Betzig, E., Isaacson, M.S. & Lewis, A. Superresolution fluorescence near-field scanning optical microscopy (NSOM). Appl. Phys. Lett. 49, 674–676 (1986).

    Article  CAS  Google Scholar 

  7. Betzig, E. Trautman, J.K., Harris, T.D., Weiner, J.S. & Kostelak, R.L. Breaking the diffraction barrier—optical microscopy on a nanometric scale. Science 251, 1468–1470 (1991).

    Article  CAS  Google Scholar 

  8. Karrai, K. & Grober, R.D. Piezoelectric tip-sample distance control for near-field optical microscopes. Appl. Phys. Lett. 66, 1842–1844 (1995).

    Article  CAS  Google Scholar 

  9. Giessibl, F.J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

    Article  CAS  Google Scholar 

  10. Shalom, S., Lieberman, K., Lewis, A. & Cohen, S.R. A micropipette force probe suitable for near-field scanning optical microscopy. Rev. Sci. Instr. 63, 4061–4065 (1992).

    Article  CAS  Google Scholar 

  11. Muramatsu, H. et al. Development of near-field optic atomic-force microscope for biological materials in aqueous solutions. Ultramicroscopy 61, 266–269 (1995).

    Article  Google Scholar 

  12. Lewis, A. et al. New design and imaging concepts in NSOM. Ultramicroscopy 61, 215–221 (1995).

    Article  CAS  Google Scholar 

  13. Dunn, R.C. Near-field scanning optical microscopy. Chem. Rev. 99, 2891–2927 (1999).

    Article  CAS  Google Scholar 

  14. Sader, J.E. Susceptibility of atomic force microscope cantilevers to lateral forces. Rev. Sci. Instr. 74, 2438–2443 (2003).

    Article  CAS  Google Scholar 

  15. Lewis, A. et al. Failure analysis of integrated circuits beyond the diffraction limit: contact mode near-field scanning optical microscopy with integrated resistance, capacitance, and UV confocal imaging. Proc. Inst. Electric. Electron. Eng. 88, 1471–1481 (2000).

    Article  Google Scholar 

  16. Benami, U. et al. Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers. Appl. Phys. Lett. 68, 2337–2339 (1996).

    Article  CAS  Google Scholar 

  17. Toda, Y., Kourogi, M., Ohtsu, M., Nagamune, Y. & Arakawa, Y. Spatially and spectrally resolved imaging of GaAs quantum-dot structures using near-field optical technique. Appl. Phys. Lett. 69, 827–829 (1996).

    Article  CAS  Google Scholar 

  18. Stuckle, R.M. et al. High quality near-field optical probes by tube etching. Appl. Phys. Lett. 75, 160–162 (1999).

    Article  Google Scholar 

  19. Zhou, H., Midha, A., Mills, G., Donaldson, L. & Weaver, J.M.R. Scanning near-field optical spectroscopy and imaging using nanofabricated probes. Appl. Phys. Lett. 75, 1824–1826 (1999).

    Article  CAS  Google Scholar 

  20. Oesterschulze, E., Rudow, O., Mihalcea, C., Scholz, W. & Werner, S. Cantilever probes for SNOM applications with single and double aperture tips. Ultramicroscopy 71, 85–92 (1998).

    Article  CAS  Google Scholar 

  21. Haesliger, D. & Stemmer, A. Subwavelength-sized aperture fabrication in aluminum by a self-terminated corrosion process in the evanescent field. Appl. Phys. Lett. 80, 3397–3399 (2002).

    Article  Google Scholar 

  22. Frey, H.G., Keilmann, F., Kriele, A. & Guckenberger, R. Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe. Appl. Phys. Lett. 81, 5030–5032 (2002).

    Article  CAS  Google Scholar 

  23. Lewis, A. & Lieberman, K. Near-field optical imaging with a non-evanescently excited high-brightness light source of sub-wavelength dimensions. Nature 354, 214–217 (1991).

    Article  Google Scholar 

  24. Sandoghdar, V. Beating the diffraction limit. Phys. World 14, 29–33 (2001).

    Article  Google Scholar 

  25. Strinkovski, A. et al. Chemical applications of near-field scanning optical microscopy: Surface and near surface chemical imaging with conventional near-field optical probes and externally illuminated chemically active ion sensors. Israel J. Chem. 41, 129–137 (2001).

    Article  CAS  Google Scholar 

  26. Papa, M., Bundmann, M.C., Greenberger, V. & Segal, M. Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons. J. Neurosci. 15, 1–11 (1995).

    Article  CAS  Google Scholar 

  27. Zenhausern, F., Oboyle, M.P. & Wickramasinghe, H.K. Apertureless near-field optical microscope. Appl. Phys. Lett. 65, 1623–1625 (1994).

    Article  CAS  Google Scholar 

  28. Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999).

    Article  CAS  Google Scholar 

  29. Labardi, M., Patane, S. & Allegrini, M. Artifact-free near-field optical imaging by apertureless microscopy. Appl. Phys. Lett. 77, 621–623 (2000).

    Article  CAS  Google Scholar 

  30. Smith, D.A. et al. Development of a scanning near-field optical probe for localised Raman spectroscopy. Ultramicroscopy 61, 247–252 (1995).

    Article  CAS  Google Scholar 

  31. Prikulis, J., Murty, K.V.G.K., Olin, H. & Kall, K. Large-area topography analysis and near-field Raman spectroscopy using bent fibre probes. J. Micros. 210, 269–273 (2003).

    Article  CAS  Google Scholar 

  32. Chang, R.K. & Furtak, T.E. Surface Enhanced Raman Scattering (Plenum, New York, 1982).

    Book  Google Scholar 

  33. Nie, S.M. & Emory, S.R. Probing single molecules and single nanoparticles by surface enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  34. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  CAS  Google Scholar 

  35. Barsegova, I. et al. Controlled fabrication of silver or gold nanoparticle atomic force probes: enhancement of second harmonic generation. Appl. Phys. Lett. 81, 3461–3463 (2002).

    Article  CAS  Google Scholar 

  36. Sun, W.X. & Shen, Z.X. A practical nanoscopic Raman imaging technique realized by near-field enhancement. Mater. Phys. Mech. 4, 17 (2001).

    CAS  Google Scholar 

  37. Hartschuh, A., Sanchez, E.J. & Xie, X.S. Novotny high-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 95503–95507 (2003).

    Article  Google Scholar 

  38. Schaller, R.D. et al. The nature of interchain excitations in conjugated polymers: spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM). J. Phys. Chem. B 106, 5143–5154 (2002).

    Article  CAS  Google Scholar 

  39. Wessel, J. Surface-enhanced optical microscopy. J. Opt. Soc. Am. B 2, 1538–1541 (1985).

    Article  CAS  Google Scholar 

  40. Levene, M.J. et al. Zero-mode waveguides for single molecule analysis at high fluorophore concentrations. Science 299, 682–686 (2003).

    Article  CAS  Google Scholar 

  41. Axelrod, N. et al. Near-field optical and atomic force constraints for superresolution 3D deconvolution in far field optical microscopy. in Three-Dimensional And Multidimensional Microscopy: Image Acquisition Processing VII. Proceedings of the Society of Photo-Optical Instrumentation Engineers Vol. 3919 (J.-A. Conchello, C.J. Cogswell, A.G. Tescher & T. Wilson, eds.) 161–169 (SPIE, New York, USA, 2000).

    Chapter  Google Scholar 

  42. Taha, H. et al. Protein printing with an atomic force sensing nanofountainpen. Appl. Phys. Lett. 83, 1031–1033 (2003).

    Article  Google Scholar 

  43. Lieberman, K., Ben-Ami, N. & Lewis, A. A fully integrated near-field optical, far-field optical, confocal and normal-force scanned probe microscope. Rev. Sci. Instr. 67, 3567–3576 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Menachem Segal for the use of his confocal microscope and for supplying a neuronal cell line, and The Horowitz Foundation, Israel Ministry of Science and Israel Science Foundation for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Lewis.

Ethics declarations

Competing interests

A.L. is founder of Nanonics Imaging Ltd., a supplier of near-field optical and scanned probe microscopes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, A., Taha, H., Strinkovski, A. et al. Near-field optics: from subwavelength illumination to nanometric shadowing. Nat Biotechnol 21, 1378–1386 (2003). https://doi.org/10.1038/nbt898

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing