Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enzymatic synthesis of antithrombin III–binding heparan sulfate pentasaccharide

Abstract

Heparan sulfate (HS) proteoglycans are crucial to numerous biological processes and pathological conditions, but to date only a few HS structures have been synthesized and characterized with regard to structure-function relationships. Because HS proteoglycans are highly diverse in structure, there are substantial limitations on their synthesis by classical chemical means, and thus new methods to rapidly assemble bioactive HS structures are needed. Here we report the biosynthesis of bioactive HS oligosaccharides using an engineered set of cloned enzymes that mimics the Golgi apparatus in vitro. We rapidly and efficiently assembled the antithrombin III–binding pentasaccharide in just 6 steps, in contrast to the approximately 60 steps needed for its chemical synthesis, with an overall yield at least twofold greater and a completion time at least 100 times faster than for the chemical process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATIII-binding heparan sulfate pentasaccharide.
Figure 2: Synthesis of ATIII-binding heparan sulfate pentasaccharide.
Figure 3: Structural and functional analysis of synthetic pentasaccharide 7.

Similar content being viewed by others

References

  1. Bernfield, M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999).

    Article  CAS  Google Scholar 

  2. Capila, I. & Linhardt, R.J. Heparin–protein interactions. Angew. Chem. Intl. Edn. 41, 391–412 (2002).

    Article  Google Scholar 

  3. Damus, P.S., Hicks, M. & Rosenberg, R.D. Anticoagulant action of heparin. Nature 246, 355–357 (1973).

    Article  CAS  Google Scholar 

  4. Rosenberg, R.D. & Damus, P.S. The purification and mechanism of action of human antithrombin-heparin cofactor. J. Biol. Chem. 248, 6490–6505 (1973).

    CAS  PubMed  Google Scholar 

  5. Atha, D.H., Stephens, A.W. & Rosenberg, R.D. Evaluation of critical groups required for the binding of heparin to antithrombin. Proc. Natl. Acad. Sci. USA 81, 1030–1034 (1984).

    Article  CAS  Google Scholar 

  6. Desai, U.R., Petitou, M., Bjork, I. & Olson, S.T. Mechanism of heparin activation of antithrombin. Role of individual residues of the pentasaccharide activating sequence in the recognition of native and activated states of antithrombin. J. Biol. Chem. 273, 7478–7487 (1998).

    Article  CAS  Google Scholar 

  7. Sinay, P. et al. Total synthesis of a heparin pentasaccharide fragment having high affinity for antithrombin-III. Carbohyd. Res. 132, C5–C9 (1984).

    Article  CAS  Google Scholar 

  8. Petitou, M. et al. Synthesis of thrombin-inhibiting heparin mimetics without side effects. Nature 398, 417–422 (1999).

    Article  CAS  Google Scholar 

  9. Vann, W.F., Schmidt, M.A., Jann, B. & Jann, K. The structure of the capsular polysaccharide (K5 antigen) of urinary-tract-infective Escherichia coli 010:K5:H4. A polymer similar to desulfo-heparin. Eur. J. Biochem. 116, 359–364 (1981).

    Article  CAS  Google Scholar 

  10. Orellana, A., Hirschberg, C.B., Wei, Z., Swiedler, S.J. & Ishihara, M. Molecular cloning and expression of a glycosaminoglycan N-acetylglucosaminyl N-deacetylase/N-sulfotransferase from a heparin-producing cell line. J. Biol. Chem. 269, 2270–2276 (1994).

    CAS  PubMed  Google Scholar 

  11. Kuberan, B. et al. Analysis of heparan sulfate oligosaccharides with ion pair-reverse phase capillary high performance liquid chromatography-microelectrospray ionization time-of-flight mass spectrometry. J. Amer. Chem. Soc. 124, 8707–8718 (2002).

    Article  CAS  Google Scholar 

  12. Warnick, C.T. & Linker, A. Purification of an unusual Δ4,5-glycuronidase from flavobacteria. Biochemistry 11, 568–572 (1972).

    Article  CAS  Google Scholar 

  13. Weber, B., Blanch, L., Clements, P.R., Scott, H.S. & Hopwood, J.J. Cloning and expression of the gene involved in Sanfilippo B syndrome (mucopolysaccharidosis III B). Hum. Mol. Genet. 5, 771–777 (1996).

    Article  CAS  Google Scholar 

  14. Li, J. et al. Biosynthesis of heparin/heparan sulfate. cDNA cloning and expression of D-glucuronyl C5-epimerase from bovine lung. J. Biol. Chem. 272, 28158–28163 (1997).

    Article  CAS  Google Scholar 

  15. Kusche, M., Hannesson, H.H. & Lindahl, U. Biosynthesis of heparin. Use of Escherichia coli K5 capsular polysaccharide as a model substrate in enzymic polymer-modification reactions. Biochem. J. 275, 151–158 (1991).

    Article  CAS  Google Scholar 

  16. Razi, N. et al. Structural and functional properties of heparin analogues obtained by chemical sulphation of Escherichia coli K5 capsular polysaccharide. Biochem. J. 309, 465–472 (1995).

    Article  CAS  Google Scholar 

  17. Rong, J., Habuchi, H., Kimata, K., Lindahl, U. & Kusche-Gullberg, M. Substrate specificity of the heparan sulfate hexuronic acid 2-O-sulfotransferase. Biochemistry 40, 5548–5555 (2001).

    Article  CAS  Google Scholar 

  18. Habuchi, H. et al. The occurrence of three isoforms of heparan sulfate 6-O-sulf-otransferase having different specificities for hexuronic acid adjacent to the targeted N-sulfoglucosamine. J. Biol. Chem. 275, 2859–2868 (2000).

    Article  CAS  Google Scholar 

  19. Liu, J., Shworak, N.W., Fritze, L.M.S., Edelberg, J.M. & Rosenberg, R.D. Purification of heparan sulfate D-glucosaminyl 3-O-sulfotransferase. J. Biol. Chem. 271, 27072–27082 (1996).

    Article  CAS  Google Scholar 

  20. Liu, J. et al. Heparan sulfate D-glucosaminyl 3-O-sulfotransferase-3A sulfates N-unsubstituted glucosamine residues. J. Biol. Chem. 274, 38155–38162 (1999).

    Article  CAS  Google Scholar 

  21. Shworak, N.W. et al. Multiple isoforms of heparan sulfate D-glucosaminyl 3-O-sulfotransferase—isolation, characterization, and expression of human cDNAs and identification of distinct genomic loci. J. Biol. Chem. 274, 5170–5184 (1999).

    Article  CAS  Google Scholar 

  22. Wu, Z.L., Zhang, L., Beeler, D.L., Kuberan, B. & Rosenberg, R.D. A new strategy for defining critical functional groups on heparan sulfate. FASEB J. 16, 539–545 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Irvin Segel for his generous gift of APS kinase. We thank Keiichi Yoshida, Seikagaku Corporation, for generously providing us with Δ4,5-glycuronidase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D Rosenberg.

Ethics declarations

Competing interests

R.D.R. has recently, with the agreement and participation of the Massachusetts Institute of Technology, established a company (Carbogenix) to commercialize the technology described in this paper.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuberan, B., Lech, M., Beeler, D. et al. Enzymatic synthesis of antithrombin III–binding heparan sulfate pentasaccharide. Nat Biotechnol 21, 1343–1346 (2003). https://doi.org/10.1038/nbt885

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt885

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing