Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device

Abstract

Although a wealth of knowledge about chemotaxis has accumulated in the past 40 years, these studies have been hampered by the inability of researchers to generate simple linear gradients instantaneously and to maintain them at steady state. Here we describe a device microfabricated by soft lithography and consisting of a network of microfluidic channels that can generate spatially and temporally controlled gradients of chemotactic factors. When human neutrophils are positioned within a microchannel, their migration in simple and complex interleukin-8 (IL-8) gradients can be tested. The cells exhibit strong directional migration toward increasing concentrations of IL-8 in linear gradients. Neutrophil migration halts abruptly when cells encounter a sudden drop in the chemoattractant concentration to zero (“cliff” gradient). When neutrophils are challenged with a gradual increase and decrease in chemoattractant (“hill” gradient), however, the cells traverse the crest of maximum concentration and migrate further before reversing direction. The technique described in this paper provides a robust method to investigate migratory cells under a variety of conditions not accessible to study by earlier techniques.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representations of the gradient generator and gradient characterization.
Figure 2: Neutrophil chemotaxis in homogeneous linear IL-8 gradients.
Figure 3: Quantification of neutrophil migration in homogeneous linear IL-8 gradients.
Figure 4: Neutrophil chemotaxis in heterogeneous linear IL-8 gradients.

Similar content being viewed by others

References

  1. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  CAS  Google Scholar 

  2. Behar, T.N. et al. GABA-induced chemokinesis and NGF-induced chemotaxis of embryonic spinal cord neurons. J. Neurosci. 14, 29–38 (1994).

    Article  CAS  Google Scholar 

  3. Wilkinson, P.C. Chemotaxis and Inflammation (Churchill Livingston, New York, 1982).

  4. Yang, X.D., Corvalan, J.R., Wang, P., Roy, C.M. & Davis, C.G. Fully human anti-interleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states. J. Leukoc. Biol. 66, 401–410 (1999).

    Article  CAS  Google Scholar 

  5. Clemons, M.J. et al. A randomized phase-II study of BB-10010 (macrophage inflammatory protein-1α) in patients with advanced breast cancer receiving 5-fluorouracil, adriamycin, and cyclophosphamide chemotherapy. Blood 92, 1532–1540 (1998).

    Article  CAS  Google Scholar 

  6. Kolber, D.L., Knisely, T.L. & Maione, T.E. Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor 4. J. Natl. Cancer Inst. 87, 304–309 (1995).

    Article  CAS  Google Scholar 

  7. Bignold, L.P. Measurement of chemotaxis of polymorphonuclear leukocytes in vitro. The problems of the control of gradients of chemotactic factors, of the control of the cells and of the separation of chemotaxis from chemokinesis. J. Immunol. Methods 108, 1–18 (1988).

    Article  CAS  Google Scholar 

  8. Boyden, S.V. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes. J. Exp. Med. 115, 453 (1962).

  9. Brown, A.F. Neutrophil granulocytes: adhesion and locomotion on collagen substrata and in collagen matrices. J. Cell Sci. 58, 455–467 (1982).

    CAS  PubMed  Google Scholar 

  10. Nelson, R.D., Quie, P.G. & Simmons, R.L. Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J. Immunol. 115, 1650–1656 (1975).

    CAS  PubMed  Google Scholar 

  11. Zigmond, S.H. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75, 606–616 (1977).

    Article  CAS  Google Scholar 

  12. Adler, J. Chemoreceptors in bacteria: studies of chemotaxis reveal systems that detect attractants independently of their mechanisms. Science 166, 1588–1597 (1969).

    Article  CAS  Google Scholar 

  13. Zicha, D., Dunn, G.A. & Brown, A.F. A new direct-viewing chemotaxis chamber. J. Cell Sci. 99, 769–775 (1991).

    PubMed  Google Scholar 

  14. Dertinger, S.K., Chiu, D.T., Jeon, N.L. & Whitesides, G.M. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73, 1240–1246 (2001).

    Article  CAS  Google Scholar 

  15. Chiu, D.T. et al. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc. Natl. Acad. Sci. USA 97, 2408–2413 (2000).

    Article  CAS  Google Scholar 

  16. Baggiolini, M., Dewald, B. & Moser, B. Human chemokines: an update. Annu. Rev. Immunol. 15, 675–705 (1997).

    Article  CAS  Google Scholar 

  17. Campbell, J.J. & Butcher, E.C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336–341 (2000).

    Article  CAS  Google Scholar 

  18. Zlotnik, A. & Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127 (2000).

    Article  CAS  Google Scholar 

  19. Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X. & Ingeber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    Article  CAS  Google Scholar 

  20. Haston, W.S. & Wilkinson, P.C. Locomotion and chemotaxis of leukocytes: gradient perception and locomotor capacity. Curr. Opin. Immunol. 1, 5–9 (1998).

    Article  Google Scholar 

  21. Yoshimura, T., Matsuhima, K., Oppenheim, J.J. & Leonard, E.J. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL 1). J. Immunol. 139, 788–793 (1987).

    CAS  PubMed  Google Scholar 

  22. Yoshimura, T. et al. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc. Natl. Acad. Sci. USA 84, 9233–9237 (1987).

    Article  CAS  Google Scholar 

  23. Baggiolini, M., Dewarld, B. & Moser, B. Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines. Adv. Immunol. 55, 97–179 (1994).

    Article  CAS  Google Scholar 

  24. Foxman, E.F., Campbell, J.J. & Butcher, E.C. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139, 1349–1360 (1997).

    Article  CAS  Google Scholar 

  25. Lauffenburger, D.A. & Linderman, J.J. Receptors: Models for Binding, Trafficking, and Signaling (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  26. Tranquillo, R.T., Zigmond, S.H. & Lauffenburger, D.A. Measurement of the chemotaxis coefficient for human neutrophils in the under-agarose migration assay. Cell Motil. Cytoskeleton 11, 1–15 (1988).

    Article  CAS  Google Scholar 

  27. Ismagilov, R.F., Stroock, A.D., Kenis, P.J.A., Whitesides, G. & Stone, H.A. Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl. Phys. Lett. 76, 2376–2378 (2000).

    Article  CAS  Google Scholar 

  28. Moghe, P.V., Nelson, R.D. & Tranquillo, R.T. Cytokine-stimulated chemotaxis of human neutrophils in a 3-D conjoined fibrin gel assay. J. Immunol. Methods 180, 193–211 (1995).

    Article  CAS  Google Scholar 

  29. Lauffenburger, D.A. & Zigmond, S.H. Chemotactic factor concentration gradients in chemotaxis assay systems. J. Immunol. Methods 40, 45–60 (1981).

    Article  CAS  Google Scholar 

  30. Firtel, R.A. & Chung, C.Y. The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients. Bioessays 22, 603–615 (2000).

    Article  CAS  Google Scholar 

  31. Parent, C.A. & Devreotes, P.N. A cell's sense of direction. Science 284, 765–770 (1999).

    Article  CAS  Google Scholar 

  32. Murphy, P.M. & Tiffany, H.L. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 253, 1280–1283 (1991).

    Article  CAS  Google Scholar 

  33. Devretoes, P.N. & Zigmond, S.H. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Biol. 4, 649–686 (1988).

    Article  Google Scholar 

  34. Zigmond, S.H. Ability of PMN leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75, 606–616 (1977).

    Article  CAS  Google Scholar 

  35. Barnett, M.L., Lamb, K.A., Costello, K.M. & Pike, M.C. Characterization of interleukin-8 receptors in human neutrophil membranes: regulation by guanine nucleotides. Biochim. Biophys. Acta 1177, 275–282 (1993).

    Article  CAS  Google Scholar 

  36. Strigini, M. & Cohen, S.M. Wingless gradient formation in the Drosophila wing. Curr. Biol. 10, 293–300 (2000).

    Article  CAS  Google Scholar 

  37. McDowell, N., Gurdon, J.B. & Grainger, D.J. Formation of a functional morphogen gradient by a passive process in tissue from the early Xenopus embryo. Int. J. Dev. Biol. 45, 199–207 (2001).

    CAS  PubMed  Google Scholar 

  38. Driever, W. & Nusslein-Volhard, C. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54, 95–104 (1988).

    Article  CAS  Google Scholar 

  39. Grunstein, J., Masbad, J.J., Hickey, R., Giordano, F. & Johnson, R.S. Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Mol. Cell Biol. 20, 7282–7291 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the Shriners Hospital for Children and the US National Institutes of Health (RR13322 and GM 56442).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Toner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li Jeon, N., Baskaran, H., Dertinger, S. et al. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20, 826–830 (2002). https://doi.org/10.1038/nbt712

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing