Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule observation of protein–protein interactions in the chaperonin system

Abstract

We have analyzed the dynamics of the chaperonin (GroEL)–cochaperonin (GroES) interaction at the single-molecule level. In the presence of ATP and non-native protein, binding of GroES to the immobilized GroEL occurred at a rate that is consistent with bulk kinetics measurements. However, the release of GroES from GroEL occurred after a lag period (3 s) that was not recognized in earlier bulk-phase studies. This observation suggests a new kinetic intermediate in the GroEL–GroES reaction pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule imaging of chaperonin GroEL–GroES dynamics.
Figure 2: Statistical analysis of GroES association and dissociation with GroEL in the presence of reduced lactalbumin.
Figure 3: (A) Effect of ATP concentration on dissociation of GroES.

Similar content being viewed by others

References

  1. Mendelsohn, A.R. & Brent, R. Protein interaction methods—toward an endgame. Science 284, 1948–1950 (1999).

    Article  CAS  Google Scholar 

  2. Walhout, A.J.M. & Vidal, M. Protein interaction maps for model organisms. Nature Rev. Mol. Cell Biol. 2, 55–62 (2001).

    Article  CAS  Google Scholar 

  3. Harada, Y. et al. Single molecule imaging and nanomanipulation of biomolecules. Methods Cell Biol. 55, 117–128 (1998).

    Article  CAS  Google Scholar 

  4. Mehta, A.D., Rief, M., Spudich, J.A., Smith, D.A. & Simmons, R.M. Single-molecule biomechanics with optical methods. Science 283, 1689–1695 (1999).

    Article  CAS  Google Scholar 

  5. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).

    Article  CAS  Google Scholar 

  6. Bukau, B. & Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366 (1998).

    Article  CAS  Google Scholar 

  7. Xu, Z., Horwich, A.L. & Sigler, P.B. The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature 388, 741–750 (1997).

    Article  CAS  Google Scholar 

  8. Weissman, J.S. et al. Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83, 577–587 (1995).

    Article  CAS  Google Scholar 

  9. Mayhew, M. et al. Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature 379, 420–426 (1996).

    Article  CAS  Google Scholar 

  10. Rye, H. S. et al. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388, 792–798 (1997).

    Article  CAS  Google Scholar 

  11. Rye, H.S. et al. GroEL–GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97, 325–338 (1999).

    Article  CAS  Google Scholar 

  12. Sakikawa, C., Taguchi, H., Makino, Y. & Yoshida, M. On the maximum size of proteins to stay and fold in the cavity of GroEL underneath GroES. J. Biol. Chem. 274, 21251–21256 (1999).

    Article  CAS  Google Scholar 

  13. Todd, M.J., Viitanen, P.V. & Lorimer, G.H. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265, 659–666 (1994).

    Article  CAS  Google Scholar 

  14. Burston, S.G., Ranson, N.A. & Clarke, A.R. The origins and consequences of asymmetry in the chaperonin reaction cycle. J. Mol. Biol. 249, 138–152 (1995).

    Article  CAS  Google Scholar 

  15. Weissman, J.S., Rye, H.S., Fenton, W.A., Beechem, J.M. & Horwich, A.L. Characterization of the active intermediate of a GroEL–GroES mediated protein folding reaction. Cell 84, 481–490 (1996).

    Article  CAS  Google Scholar 

  16. Okazaki, A., Ikura, T., Nikaido, K. & Kuwajima, K. The chaperonin GroEL does not recognize apo-α-lactalbumin in the molten globule state. Nat. Struct. Biol. 1, 439–446 (1994).

    Article  CAS  Google Scholar 

  17. Hayer-Hartl, M.K., Ewbank, J.J., Creighton, T.E. & Hartl, F.U. Conformational specificity of the chaperonin GroEL for the compact folding intermediates of α-lactalbumin. EMBO J. 13, 3192–3202 (1994).

    Article  CAS  Google Scholar 

  18. Aoki, K. et al. Calorimetric observation of a GroEL-protein binding reaction with little contribution of hydrophobic interaction. J. Biol. Chem. 272, 32158–32162 (1997).

    Article  CAS  Google Scholar 

  19. Motojima, F. et al. Hydrophilic residues at the apical domain of GroEL contribute to GroES binding but attenuate polypeptide binding. Biochem. Biophys. Res. Commun. 267, 842–849 (2000).

    Article  CAS  Google Scholar 

  20. Zondlo, J., Fisher, K.E., Lin, Z., Ducote, K.R. & Eisenstein, E. Monomer–heptamer equilibrium of the Escherichia coli chaperonin GroES. Biochemistry 34, 10334–10339 (1995).

    Article  CAS  Google Scholar 

  21. Hayer-Hartl, M.K., Martin, J. & Hartl, F.U. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Science 269, 836–841 (1995).

    Article  CAS  Google Scholar 

  22. Peralta, D., Hartman, D.J., Hoogenraad, N.J. & Hoj, P.B. Generation of a stable folding intermediate which can be rescued by the chaperonins GroEL and GroES. FEBS Lett. 339, 45–49 (1994).

    Article  CAS  Google Scholar 

  23. Ranson, N.A., Burston, S.G. & Clarke, A.R. Binding, encapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction. J. Mol. Biol. 266, 656–664 (1997).

    Article  CAS  Google Scholar 

  24. Tanaka, N. & Fersht, A.R. Identification of substrate binding site of GroEL minichaperonin. J. Mol. Biol. 292, 173–180 (1999).

    Article  CAS  Google Scholar 

  25. Prijambada, I.D. et al. Solubility of artificial proteins with random sequences. FEBS Lett. 382, 21–25 (1996).

    Article  CAS  Google Scholar 

  26. Aoki, K., Motojima, F., Taguchi, H., Yomo, T. & Yoshida, M. GroEL binds artificial proteins with random sequences. J. Biol. Chem. 275, 13755–13758 (2000).

    Article  CAS  Google Scholar 

  27. Viani, M.B. et al. Probing protein–protein interactions in real time. Nat. Struct. Biol. 7, 644–647 (2000).

    Article  CAS  Google Scholar 

  28. Cliff, M.J. et al. A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL. J. Mol. Biol. 293, 667–684 (1999).

    Article  CAS  Google Scholar 

  29. Kawata, Y. et al. Functional communications between the apical and equatorial domains of GroEL through the intermediate domain. Biochemistry 38, 15731–15740 (1999).

    Article  CAS  Google Scholar 

  30. Lu, H.P., Xun, L. & Xie, X.S. Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998).

    Article  CAS  Google Scholar 

  31. Harada, Y. et al. Single-molecule imaging of RNA polymerase–DNA interactions in real time. Biophys. J. 76, 709–715 (1999).

    Article  CAS  Google Scholar 

  32. Yamasaki, R. et al. Single molecular observation of the interaction of GroEL with substrate proteins. J. Mol. Biol. 292, 965–972 (1999).

    Article  CAS  Google Scholar 

  33. Davenport, R.J., Wuite, G.J., Landick, R. & Bustamante, C. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287, 2497–2500 (2000).

    Article  CAS  Google Scholar 

  34. Strick, T.R., Croquette, V. & Bensimon, D. Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404, 901–904 (2000).

    Article  CAS  Google Scholar 

  35. Sako, Y., Minoguchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2, 168–172 (2000).

    Article  CAS  Google Scholar 

  36. Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  37. Weissman, J.S., Kashi, Y., Fenton, W.A. & Horwich, A.L. GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78, 693–702 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Yamada Foundation (H.T. and T.F.) and a grant-in-aid for Scientific Research on Priority Areas (A) from the Ministry of Education, Science, Sports and Culture of Japan (H.T., M.Y., and T.F.). We thank Dr. A. Horwich for discussions, Dr. F. Motojima for discussion of polypeptide–GroEL binding, and Dr. J. Hardy for critical reading of the manuscript. We also thank Dr. K. Aoki for providing polypeptide RP3-42 and Mrs. J. Suzuki for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masasuke Yoshida.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taguchi, H., Ueno, T., Tadakuma, H. et al. Single-molecule observation of protein–protein interactions in the chaperonin system. Nat Biotechnol 19, 861–865 (2001). https://doi.org/10.1038/nbt0901-861

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0901-861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing