Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit

Abstract

Transgenic chloroplasts offer unique advantages in plant biotechnology, including high-level foreign protein expression, absence of epigenetic effects, and gene containment due to the lack of transgene transmission through pollen. However, broad application of plastid genome engineering in biotechnology has been largely hampered by both the lack of chloroplast transformation systems for major crop plants and the usually low plastid gene expression levels in nongreen tissues such as fruits, tubers, and other storage organs. Here we describe the development of a plastid transformation system for tomato, Lycopersicon esculentum. This is the first report on the generation of fertile transplastomic plants in a food crop with an edible fruit. We show that chromoplasts in the tomato fruit express the transgene to 50% of the expression levels in leaf chloroplasts. Given the generally very high foreign protein accumulation rates that can be achieved in transgenic chloroplasts (>40% of the total soluble protein), this system paves the way to efficient production of edible vaccines, pharmaceuticals, and antibodies in tomato.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction of chloroplast transformation vectors containing polylinkers for cloning of passenger genes.
Figure 2: Generation of tomato plants with transgenic plastids.
Figure 3: RFLP analysis to identify homoplasmic transplastomic tomato lines.
Figure 4: Example of a test for maternal inheritance of the spectinomycin resistance trait in the F1 progeny of transplastomic tomato plants.
Figure 5: Foreign protein accumulation in leaves, green and ripe red fruits of transplastomic tomato plants.
Figure 6: Molecular analyses of F1 progeny resulting from a cross of a transplastomic plant with a wild-type plant.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Sugiura, M. The chloroplast genome. Plant Mol. Biol. 19, 149–168 (1992).

    Article  CAS  Google Scholar 

  2. Bendich, A.J. Why do chloroplasts and mitochondria contain so many copies of their genome. BioEssays 6, 279–282 (1987).

    Article  CAS  Google Scholar 

  3. Boynton, J.E. et al. Chloroplast transformation in Chlamydomonas with high-velocity microprojectiles. Science 240, 1534–1538 (1988).

    Article  CAS  Google Scholar 

  4. Svab, Z., Hajdukiewicz, P. & Maliga, P. Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA 87, 8526–8530 (1990).

    Article  CAS  Google Scholar 

  5. Daniell, H. GM crops: public perception and scientific solutions. Trends Plant Sci. 4, 467–469 (1999).

    Article  CAS  Google Scholar 

  6. Hager, M. & Bock, R. Enslaved bacteria as new hope for plant biotechnologists. Appl. Microbiol. Biotechnol. 54, 302–310 (2000).

    Article  CAS  Google Scholar 

  7. Heifetz, P.B. Genetic engineering of the chloroplast. Biochimie 82, 655–666 (2000).

    Article  CAS  Google Scholar 

  8. McBride, K.E. et al. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technology 13, 362–365 (1995).

    CAS  PubMed  Google Scholar 

  9. Staub, J.M. et al. High yield production of a human therapeutic protein in tobacco chloroplasts. Nat. Biotechnol. 18, 333–338 (2000).

    Article  CAS  Google Scholar 

  10. De Cosa, B., Moar, W., Lee, S.-B., Miller, M. & Daniell, H. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 19, 71–74 (2001).

    Article  CAS  Google Scholar 

  11. Staub, J.M. & Maliga, P. Expression of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids. Plant J. 7, 845–848 (1995).

    Article  CAS  Google Scholar 

  12. Staub, J.M. & Maliga, P. Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell 4, 39–45 (1992).

    Article  CAS  Google Scholar 

  13. Svab, Z. & Maliga, P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90, 913–917 (1993).

    Article  CAS  Google Scholar 

  14. Carrer, H., Hockenberry, T.N., Svab, Z. & Maliga, P. Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet. 241, 49–56 (1993).

    Article  CAS  Google Scholar 

  15. Daniell, H., Datta, R., Varma, S., Gray, S. & Lee, S.-B. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol. 16, 345–348 (1998).

    Article  CAS  Google Scholar 

  16. Sikdar, S.R., Serino, G., Chaudhuri, S. & Maliga, P. Plastid transformation in Arabidopsis thaliana. Plant Cell Rep. 18, 20–24 (1998).

    Article  CAS  Google Scholar 

  17. Sidorov, V.A. et al. Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J. 19, 209–216 (1999).

    Article  CAS  Google Scholar 

  18. Bogorad, L. Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products. Trends Biotechnol. 18, 257–263 (2000).

    Article  CAS  Google Scholar 

  19. Bock, R., Hermann, M. & Kössel, H. In vivo dissection of cis-acting determinants for plastid RNA editing. EMBO J. 15, 5052–5059 (1996).

    Article  CAS  Google Scholar 

  20. Hiratsuka, J. et al. The complete sequence of the rice (Oryza sativa) Chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of cereals. Mol. Gen. Genet. 217, 185–194 (1989).

    Article  CAS  Google Scholar 

  21. Maier, R.M., Neckermann, K., Igloi, G.L. & Kössel, H. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J. Mol. Biol. 251, 614–628 (1995).

    Article  CAS  Google Scholar 

  22. Hirose, T., Kusumegi, T., Tsudzuki, T. & Sugiura, M. RNA editing sites in tobacco chloroplast transcripts: editing as a possible regulator of chloroplast RNA polymerase activity. Mol. Gen. Genet. 262, 462–467 (1999).

    Article  CAS  Google Scholar 

  23. Bathgate, B., Purton, M.E., Grierson, D. & Goodenough, P.W. Plastic changes during the conversion of chloroplasts to chromoplasts in ripening tomatoes. Planta 165, 197–204 (1985).

    Article  CAS  Google Scholar 

  24. Piechulla, B., Chonoles Imlay, K.R. & Gruissem, W. Plastid gene expression during fruit ripening in tomato. Plant Mol. Biol. 5, 373–384 (1985).

    Article  CAS  Google Scholar 

  25. Khan, M.S. & Maliga, P. Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat. Biotechnol. 17, 910–915 (1999).

    Article  CAS  Google Scholar 

  26. Ye, G.-N. et al. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J. 25, 261–270 (2001).

    Article  CAS  Google Scholar 

  27. Kuroda, H. & Maliga, P. Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol. 125, 430–436 (2001).

    Article  CAS  Google Scholar 

  28. Giddings, G., Allison, G., Brooks, D. & Carter, A. Transgenic plants as factories for biopharmaceuticals. Nat. Biotechnol. 18, 1151–1155 (2000).

    Article  CAS  Google Scholar 

  29. Daniell, H., Streatfield, S.J. & Wycoff, K. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci. 6, 219–226 (2001).

    Article  CAS  Google Scholar 

  30. Bock, R. & Maliga, P. In vivo testing of a tobacco plastid DNA segment for guide RNA function in psbL editing. Mol. Gen. Genet. 247, 439–443 (1995).

    Article  CAS  Google Scholar 

  31. Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 493–497 (1962).

    Article  Google Scholar 

  32. Kanevski, I. & Maliga, P. Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc. Natl. Acad. Sci. USA 91, 1969–1973 (1994).

    Article  CAS  Google Scholar 

  33. Doyle, J.J. & Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 12, 13–15 (1990).

    Google Scholar 

  34. Wakasugi, T., Sugita, M., Tsudzuki, T. & Sugiura, M. Updated gene map of tobacco chloroplast DNA. Plant Mol. Biol. Rep. 16, 231–241 (1998).

    Article  CAS  Google Scholar 

  35. Ruf, S., Biehler, K. & Bock, R. A small chloroplast-encoded protein as a novel architectural component of the light-harvesting antenna. J. Cell Biol. 149, 369–377 (2000).

    Article  CAS  Google Scholar 

  36. Svab, Z. & Maliga, P. Mutation proximal to the tRNA binding region of the Nicotiana plastid 16S rRNA confers resistance to spectinomycin. Mol. Gen. Genet. 228, 316–319 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Walter J. Siqueira (Centro de Genética, IAC-Instituto Agronomico de Campinas, Brazil) for tomato seeds. We are grateful to Dr. Jean-David Rochaix (University of Geneva, Switzerland) for providing us with an AadA antibody and Dr. Pal Maliga (Rutgers University, New Jersey) for a chimeric aadA gene. We thank Dr. Jeff Staub (Monsanto Co., St. Louis, MO) for communicating results before publication. This research was supported by a grant in the PROBRAL Program of the Deutscher Akademischer Austauschdienst (DAAD) and the Coordenação Aperfeiçoamento de Pessoal de Nível Superior (CAPES) to H.C. and R.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Bock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruf, S., Hermann, M., Berger, I. et al. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19, 870–875 (2001). https://doi.org/10.1038/nbt0901-870

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0901-870

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing