Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Incorporation of decay-accelerating factor into the baculovirus envelope generates complement-resistant gene transfer vectors

Abstract

Baculovirus vectors are an efficient means to deliver genes into hepatocytes in vitro. In experiments that exclude components of the complement system, gene transfer is facilitated. Therefore, the complement system has been defined to represent a potent primary barrier to direct application of baculoviruses in vivo. Here we have genetically manipulated baculoviruses so that the complement-regulatory protein human decay- accelerating factor (DAF) is incorporated into the viral envelope. We found that this modification protected baculovirus vectors against complement-mediated inactivation. Complement-resistant baculovirus vectors were additionally analyzed by immunoblotting and electron microscopy, showing the extent of envelope-incorporated DAF and shape of complement-resistant baculoviruses after exposure to complement. This modified baculovirus vector allowed for an enhanced gene transfer into complement-sufficient neonatal rats in vivo, and thus represents a step in the development of improved alternative viral vectors for gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complement-assay using Sf9 insect cells.
Figure 2: DAF-modified baculoviruses transfer genes into Huh7 cells in the presence of complement.
Figure 3: Immunoblot of purified recombinant baculoviruses.
Figure 4: Electron-microscopic analysis of recombinant baculoviruses.
Figure 5: Baculovirus-mediated gene transfer of the hFIX gene in vivo.

Similar content being viewed by others

References

  1. Verma, I.M. & Nikunj S. Gene therapy—promises, problems and prospects. Nature 389, 239–242 (1997).

    Article  CAS  Google Scholar 

  2. Hofmann, C. et al. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc. Natl. Acad. Sci. USA 92, 10099–10103 (1995).

    Article  CAS  Google Scholar 

  3. Boyce, F.M. & Bucher, N.L. Baculovirus-mediated gene transfer into mammalian cells. Proc. Natl. Acad. Sci. USA 93, 2348–2352 (1996).

    Article  CAS  Google Scholar 

  4. Shoji, I. et al. Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J. Gen. Virol. 78, 2657–2664 (1997).

    Article  CAS  Google Scholar 

  5. Condray, P.J., Witherspoon, S.M., Clay, W.C. & Kost, T.A. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc. Natl. Acad. Sci. USA 96, 127–132 (1999).

    Article  Google Scholar 

  6. Barsoum, J., Brown, R., McKee M. & Boyce F.M. Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Hum. Gene Ther. 8, 2011–2018 (1997).

    Article  CAS  Google Scholar 

  7. Palombo, F. et al. Site-specific integration in mammalian cells mediated by a new hybrid baculovirus-adeno-associated virus vector. J. Virol. 72, 5025–5034 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sandig, V. et al. Gene transfer into hepatocytes and human liver tissue by baculovirus vectors. Hum. Gene Ther. 7, 1937–1945 (1996).

    Article  CAS  Google Scholar 

  9. Szebeni, J., Wassef, N.M., Spielberg, H., Rudolph, A.S. & Alving, C.R. Complement activation in rats by liposomes and liposome-encapsulated hemoglobin: evidence for anti-lipid antibodies and alternative pathway activation. Biochem. Biophys. Res. Commun. 205, 255–263 (1994).

    Article  CAS  Google Scholar 

  10. Marjan J., Xie Z. & Devine, D.V. Liposome-induced activation of the classical complement pathway does not require immunoglobulin. Biochim. Biophys. Acta. 1192, 35–44 (1994).

    Article  CAS  Google Scholar 

  11. Plank, C., Mechtler, K., Szoka, F.C. Jr. & Wagner, E. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum. Gene Ther. 7, 1437–1446 (1996).

    Article  CAS  Google Scholar 

  12. Welsh, R.M. Jr., Cooper, N.R., Jensen, F.C. & Oldstone, M.B. Human serum lyses RNA tumour viruses. Nature 257, 612–614 (1975).

    Article  CAS  Google Scholar 

  13. Takeuchi, Y. et al. Sensitization of cells and retroviruses to human serum by (α1–3) galactosyltransferase. Nature 379, 85–88 (1996).

    Article  CAS  Google Scholar 

  14. Hofmann, C. & Strauss, M. Baculovirus-mediated gene transfer in the presence of human serum or blood facilitated by inhibition of the complement system. Gene Ther. 5, 531–536 (1998).

    Article  CAS  Google Scholar 

  15. Hofmann, C., Lehnert, W. & Strauss, M. The baculovirus vector system for gene delivery into hepatocytes. Gene Ther. Mol. Biol. 1, 231–239 (1998).

    Google Scholar 

  16. Kirschfink, M. Controlling the complement system in inflammation. Immunopharmacol. 38, 51–62 (1997).

    Article  CAS  Google Scholar 

  17. Brodbeck, W.G., Liu, D., Sperry, J., Mold, C. & Medof M.E. Localization of classical and alternative pathway regulatory activity within decay-accelerating factor. J. Immunol. 156, 2528–2533 (1996).

    CAS  PubMed  Google Scholar 

  18. Rooney, I.A., Oglesby, T.J. & Atkinson J.E. Complement in human reproduction: activation and control. Immunol. Res. 12, 276–294 (1993).

    Article  CAS  Google Scholar 

  19. Watkins, N.J., Braidley, P., Bray, C.J., Savill, C.M. & White D.J.G. Coating of human decay accelerating factor (hDAF) onto medical devices to improve biocompatibility. Immunopharmacol. 38, 111–118 (1997).

    Article  CAS  Google Scholar 

  20. Carrington, C.A., Richards, A.C., van den Bogaerde, J. Tucker, A.W. & White, D.J.G. Complement activation, its consequences, and blockade by gene transfer. World J. Surg. 21, 907–912 (1997).

    Article  CAS  Google Scholar 

  21. Spear, G.T. et al. Host cell-derived complement control proteins CD55 and CD59 are incorporated into the virions of two unrelated enveloped viruses. J. Immunol. 155, 4376–4381 (1995).

    CAS  PubMed  Google Scholar 

  22. Saifuddin, M. et al. Role of virion-associated glycosylphosphatidylinositol-linked proteins CD55 and CD59 in complement resistance of cell line-derived and primary isolates of HIV-1. J. Exp. Med. 182, 501–509 (1995).

    Article  CAS  Google Scholar 

  23. Stoiber, H., Pinter, C., Siccardi, A.G., Clivio, A. & Dierich, M.P. Efficient destruction of human immunodeficiency virus in human serum by inhibiting the protective action of complement factor H and decay accelerating factor (DAF, CD55). J. Exp. Med. 183, 307–310 (1996).

    Article  CAS  Google Scholar 

  24. Volkman, L.E., Goldsmith, P.A., Hess, R.T. & Faulkner, P. Neutralization of budded Autographa californica nuclear polyhedrosis virus by a monoclonal antibody: identification of the target antigen. Virology 133, 354–362 (1984).

    Article  CAS  Google Scholar 

  25. Boublik, Y., Di Bonito, P. & Jones, I.M. Eucaryotic virus display: engineering of the major surface glycoprotein of the Autographa californica nuclear polyhedrosis virus (AcNPV) for the presentation of foreign proteins on the virus surface. Bio/Technology 13, 1079–1084 (1995).

    Article  CAS  Google Scholar 

  26. O′Reilly, O.R., Miller, L.K. & Luckow, V.A. Virus host interactions. In Baculovirus expression vectors: a laboratory manual. (Oxford University Press, New York, NY; 1994).

    Google Scholar 

  27. Crossen, R. & Gruenwald, S. Baculovirus expression vector system manual. (PharMingen, San Diego, CA; 1996).

    Google Scholar 

  28. Hayashi, S. et al. Establisment of complement-resistant retroviral vector by homologous restriction factor 20 gene. Gene Ther. 5, 282–285 (1998).

    Article  CAS  Google Scholar 

  29. Tomlinson S. Complement defense mechanisms. Curr. Opin. Immunol. 5, 83–89 (1993).

    Article  CAS  Google Scholar 

  30. Lublin, D.M. & Atkinson, J.P. Decay-accelerating factor: biochemistry, molecular biology, and function. Ann. Rev. Immunol. 7, 35–38 (1989).

    Article  CAS  Google Scholar 

  31. Cooper, N.R. Evasion of complement-mediated damage by microorganisms. In The complement system. (eds Rother, K., Till, G.O. & Hänisch, G.M.) 309–322 (Springer-Verlag, Berlin; 1998).

    Google Scholar 

  32. Harris, J.D. & Lemoine N.R. Strategies for targeted gene therapy. Trends Genet. 12, 400–405 (1996).

    Article  CAS  Google Scholar 

  33. Murphy, F.A. et al. (eds). Virus taxonomy. Classification and nomenclature of viruses. (Springer-Verlag, New York; 1995).

    Google Scholar 

  34. Cooper, N.R. Complement-dependent virus neutralization. In The complement system. (eds Rother, K., Till, G.O. & Hänisch, G.M.) 302–309 (Springer-Verlag, Berlin; 1998).

    Google Scholar 

  35. Hänsch, G.M. Defense against bacteria. In The complement system. (eds Rother, K., Till, G.O. & Hänisch, G.M.) 285–301 (Springer-Verlag, Berlin; 1998).

    Google Scholar 

  36. Harris, C.L., Spiller, O.B. & Morgan, B.P. Human and rodent decay-accelerating factors (CD55) are not species-restricted in their complement-inhibiting activities. Immunology 100, 462–470 (2000).

    Article  CAS  Google Scholar 

  37. Sarkis, C. et al. Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. Proc. Natl. Acad. Sci. USA 97, 14638–14643 (2000).

    Article  CAS  Google Scholar 

  38. Jongen, P.J.H. et al. Cerebrospinal fluid C3 and C4 indexes in immunological disorders of the central nervous system. Acta Neurol. Scand. 101, 116–121 (2000).

    Article  CAS  Google Scholar 

  39. Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T. & Sato, J. Growth of human hepatoma cell lines with differentiated functions in chemically defined medium. Cancer. Res. 42, 3858–3863 (1982).

    CAS  PubMed  Google Scholar 

  40. Baru, M., Axelrod, J.H. & Nur, I. Liposome-encapsulated DNA-mediated gene transfer and synthesis of human factor IX in mice. Gene 161, 143–150 (1995).

    Article  CAS  Google Scholar 

  41. Hohmann, A.W. & Faulkner, P. Monoclonal antibodies to baculovirus structural proteins: determination of specificities by western blot analysis. Virology 125, 432–444 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We dedicate this work to the memory of Michael Strauss. The authors thank John Atkinson and Kathy Liszewski for the DAF cDNA, Mark Kay for the hFIX cDNA, and Peter Faulkner for AcV5 antibodies. We also wish to acknowledge Verena Sladek, Uta Fischer, Dagmar Viertel, and Gabi N′diaye for excellent technical assistance. This work was supported by the Bundesministerium für Bildung und Forschung (BMBF Gesundheitsforschung 2000, no. 01GE9628).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hofmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hüser, A., Rudolph, M. & Hofmann, C. Incorporation of decay-accelerating factor into the baculovirus envelope generates complement-resistant gene transfer vectors. Nat Biotechnol 19, 451–455 (2001). https://doi.org/10.1038/88122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing