Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo

Abstract

Traditional gene therapy vectors have demonstrated limited utility for treatment of chronic lung diseases such as cystic fibrosis (CF). Herein we describe a vector based on a Filovirus envelope protein-pseudotyped HIV vector, which we chose after systematically evaluating multiple strategies. The vector efficiently transduces intact airway epithelium from the apical surface, as demonstrated in both in vitro and in vivo model systems. This shows the potential of pseudotyping in expanding the utility of lentiviral vectors. Pseudotyped lentiviral vectors may hold promise for the treatment of CF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GFP expression in ALI cultures of human airway epithelial cells.
Figure 2: Ultrastructural characterization of VSV-G- or EboZ-pseudotyped lentiviral vectors.
Figure 3: Ex vivo gene transfer to excised human trachea.
Figure 4: In vivo gene transfer to C57BL/6 mice at day 28 and day 63.

Similar content being viewed by others

References

  1. Davis, P.B., Drumm, M. & Konstan, M.W. Cystic fibrosis. Am. J. Respir. Crit. Care Med. 154, 1229–1256 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Buchschacher, G.L. Jr. & Wong-Staal, F. Development of lentiviral vectors for gene therapy for human diseases. Blood. 95, 2499–2504 (2000).

    CAS  PubMed  Google Scholar 

  3. Peng, K.W. & Russell, S. J. Viral vector targeting. Curr. Opin. Biotechnol. 10, 454–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Schnierle, B.S. & Groner, B. Retroviral targeted delivery. Gene Ther. 3, 1069–1073 (1996).

    CAS  PubMed  Google Scholar 

  5. Goldman, M.J., Lee, P.S., Yang, J.S. & Wilson, J.M. Lentiviral vectors for gene therapy of cystic fibrosis. Hum Gene Ther. 8, 2261–2268 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, G. et al. Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect. J Clin. Invest. 104, R55–62 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Johnson, L.G., Olsen, J.C., Naldini, L. & Boucher, R.C. Pseudotyped human lentiviral vector-mediated gene transfer to airway epithelia in vivo. Gene Ther. 7, 568–574 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Kobinger, G.P. et al. Virion-targeted viral inactivation of human immunodeficiency virus type 1 by using Vpr fusion proteins. J. Virol. 72, 5441–5448 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gelderblom H.R. Assembly and morphology of HIV: potential effect of structure on viral function. Aids. 5, 617–637 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Mochizuki, H., Schwartz, J.P., Tanaka, K., Brady, R.O. & Reiser, J. High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J. Virol. 72, 8873–8883 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong, J., Roth, M.G. & Hunter, E. A chimeric avian retrovirus containing the influenza virus hemagglutinin gene has an expanded host range. J. Virol. 66, 7374–7382 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Battini, J.L., Heard, J.M. & Danos, O. Receptor choice determinants in the envelope glycoproteins of amphotropic, xenotropic, and polytropic murine leukemia viruses. J. Virol. 66, 1468–1475 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Holberg, C.J. et al. Risk factors for respiratory syncytial virus-associated lower respiratory illnesses in the first year of life. Am. J. Epidemiol. 133, 1135–1151 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Johnson, E., Jaax, N., White, J. & Jahrling, P. Lethal experimental infections of rhesus monkeys by aerosolized Ebola virus. Int. J. Exp. Pathol. 76, 227–236 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Snyder, E.Y. et al. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68, 33–51 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, Z. et al. Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science 279, 1034–1037 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Wool-Lewis, R.J. & Bates, P. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J. Virol. 72, 3155–3160 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chan, S., Speck, R., Ma, M. & Goldsmith, M. Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J. Virol. 74, 4933–4937 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bals, R. et al. Transduction of well-differentiated airway epithelium by recombinant adeno-associated virus is limited by vector entry. J. Virol. 73, 6085–6088 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Engelhardt, J.F., Yankaskas, J.R. & Wilson, J.M. In vivo retroviral gene transfer into human bronchial epithelia of xenografts. J. Clin. Invest. 90, 2598–2607 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Olsen, J.C. et al. Correction of the apical membrane chloride permeability defect in polarized cystic fibrosis airway epithelia following retroviral-mediated gene transfer. Hum. Gene Ther. 3, 253–266 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Zabner, J. et al. Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J. Virol. 74, 3852–3858 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yonemitsu, Y. et al. Efficient gene transfer to airway epithelium using recombinant Sendai virus. Nat. Biotechnol. 18, 970–973 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Lopez-Vidriero, M.T. & Reid, L. Chemical markers of mucous and serum glycoproteins and their relation to viscosity in mucoid and purulent sputum from various hypersecretory diseases. Am. Rev. Respir. Dis. 117, 465–477 (1978).

    CAS  PubMed  Google Scholar 

  25. Crawford, I. et al. Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc. Natl. Acad. Sci. USA 88, 9262–9266 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duan, D., Yue, Y., Yan, Z., Yang, J. & Engelhardt, J.F. Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J. Clin. Invest. 105, 1573–1587 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, G. et al. Influence of cell polarity on retrovirus-mediated gene transfer to differentiated human airway epithelia. J. Virol. 72, 9818–9826 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Engelhardt, J.F. et al. Direct gene transfer of human CFTR into human bronchial epithelia of xenografts with E1-deleted adenoviruses. Nat. Genet. 4, 27–34 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Blomer, U. et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 71, 6641–6649 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lodge, R., Subbramanian, R.A., Forget, J., Lemay, G. & Cohen, E.A. MuLV-based vectors pseudotyped with truncated HIV glycoproteins mediate specific gene transfer in CD4+ peripheral blood lymphocytes. Gene Ther. 5, 655–664 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Yao, X.J., Kobinger, G., Dandache, S., Rougeau, N. & Cohen, E. HIV-1 Vpr-chloramphenicol acetyltransferase fusion proteins: sequence requirement for virion incorporation and analysis of antiviral effect. Gene Ther. 6, 1590–1599 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Inder Verma for providing pCMVΔR8.2, pHR′LacZ, and the VSV-G envelope expressor, Dr. Paul Bates for providing the EboZ and EboR envelope plasmids as well as antibodies against the Ebola envelope glycoprotein, Dr. Eric Hunter for providing the BH-RCANsHA envelope plasmid, Dr. Jacob Reizer for providing the Mokola envelope plasmid, Dr. Eric Cohen for providing the SVCMV in plasmid and the amphotropic MuLV envelope, Dr. Christian Moser for insightful discussion, and Dr. John Tazelaar for assistance with tissue processing and microscopy. G.P.K. is the recipient of a fellowship from the Medical Research Council of Canada. This work was funded by grants from the National Institutes of Health (DK47757-08), the CF Foundation, and Genovo, Inc., a biotechnology company Dr. Wilson founded and in which he has equity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobinger, G., Weiner, D., Yu, QC. et al. Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat Biotechnol 19, 225–230 (2001). https://doi.org/10.1038/85664

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85664

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing