Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphoramidate oligonucleotides as potent antisense molecules in cells and in vivo

Abstract

Antisense oligonucleotides are designed to specifically hybridize to a target messenger RNA (mRNA) and interfere with the synthesis of the encoded protein. Uniformly modified oligonucleotides containing N3′–P5′ phosphoramidate linkages exhibit (NP) extremely high-affinity binding to single-stranded RNA, do not induce RNase H activity, and are resistant to cellular nucleases. In the present work, we demonstrate that phosphoramidate oligonucleotides are effective at inhibiting gene expression at the mRNA level, by binding to their complementary target present in the 5′-untranslated region. Their mechanism of action was demonstrated by comparative analysis of three expression systems that differ only by the composition of the oligonucleotide target sequence (HIV-1 polypurine tract or PPT sequence) present just upstream from the AUG codon of the firefly luciferase reporter gene: the experiments have been done on isolated cells using oligonucleotide delivery mediated by cationic molecules or streptolysin O (SLO), and in vivo by oligonucleotide electrotransfer to skeletal muscle. In our experimental system phosphoramidate oligonucleotides act as potent and specific antisense agents by steric blocking of translation initiation; they may prove useful to modulate RNA metabolism while maintaining RNA integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Luciferase expression systems for the demonstration of an antisense mechanism of action.
Figure 2: Effect of the NP modification on antisense potency.
Figure 3: Phosphoramidate oligonucleotides that do not induce RNase H are efficient inhibitors of translation initiation.
Figure 4: Intracellular distribution of NP oligonucleotides.
Figure 5: Phosphoramidate oligonucleotides antisense effect in vivo.

Similar content being viewed by others

References

  1. Lewis, J.G. et al. A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc. Natl. Acad. Sci. USA 93, 3176–3181 ( 1996).

    Article  CAS  Google Scholar 

  2. Flanagan, W.M. et al. A cytosine analog that confers enhanced potency to antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 96, 3513–3518 (1999).

    Article  CAS  Google Scholar 

  3. Baker, B.F. et al. 2′-O-(2-Methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells. J. Biol. Chem. 272, 11994–12000 (1997).

    Article  CAS  Google Scholar 

  4. Iyer, R.P., Roland, A., Zhou, W. & Ghosh, K. Modified oligonucleotides-synthesis, properties and applications. Curr. Opin. Mol. Ther. 1, 344–358 (1999).

    CAS  Google Scholar 

  5. Gryaznov, S.M. & Chen, J.K. Oligodeoxyribonucleotide N3′-P5′ phosphoramidates—synthesis and hybridization properties . J. Am. Chem. Soc. 116, 3143– 3144 (1994).

    Article  CAS  Google Scholar 

  6. Skorski, T., Perrotti, D., Nieborowska-Skorska, M., Gryaznov, S. & Calabretta, B. Antileukemia effect of c-myc N3′-P5′ phosphoramidate antisense oligonucleotides in vivo. Proc. Natl. Acad. Sci. USA 94, 3966–3971 (1997).

    Article  CAS  Google Scholar 

  7. Gryaznov, S.M. et al. Oligonucleotide N3′–P5′ phosphoramidates as antisense agents. Nucleic Acids Res. 24, 1508–1514 (1996).

    Article  CAS  Google Scholar 

  8. Heidenreich, O., Gryaznov, S. & Nerenberg, M. RNase H-independent antisense activity of oligonucleotide N3′–P5′ phosphoramidates. Nucleic Acids Res. 25, 776–780 (1997).

    Article  CAS  Google Scholar 

  9. Charneau, P. et al. HIV-1 reverse transcription. A termination step at the center of the genome. J. Mol. Biol. 241, 651– 662 (1994).

    Article  CAS  Google Scholar 

  10. Zennou, V. et al. HIV-1 genome nuclear import is mediated by a central DNA flap . Cell 101, 173–185 (2000).

    Article  CAS  Google Scholar 

  11. Giovannangeli, C. & Hélène, C. Triplex-forming molecules for modulation of DNA information processing. Curr. Opin. Mol. Ther. 2, 288–297 (2000).

    CAS  PubMed  Google Scholar 

  12. Faria, M. et al. Targeted inhibition of transcription elongation in cells mediated by triplex-forming oligonucleotides. Proc. Natl. Acad. Sci. USA 97, 3862–3867 ( 2000).

    Article  CAS  Google Scholar 

  13. Escude, C. et al. Stable triple helices formed by oligonucleotide N3′-P5′ phosphoramidates inhibit transcription elongation. Proc. Natl. Acad. Sci. USA 93, 4365–4369 (1996).

    Article  CAS  Google Scholar 

  14. Dias, N. et al. Antisense PNA tridecamers targeted to the coding region of Ha-ras mRNA arrest polypeptide chain elongation. J. Mol. Biol. 294, 403–416 (1999).

    Article  CAS  Google Scholar 

  15. Dheur, S. et al. Polyethylenimine but not cationic lipid improves antisense activity of 3′-capped phosphodiester oligonucleotides. Antisense Nucleic Acid Drug Dev. 9, 515–525 (1999).

    Article  CAS  Google Scholar 

  16. Giles, R.V., Ruddell, C.J., Spiller, D.G., Green, J.A. & Tidd, D.M. Single base discrimination for ribonuclease H-dependent antisense effects within intact human leukaemia cells. Nucleic Acids Res. 23, 954– 961 (1995).

    Article  CAS  Google Scholar 

  17. Sierakowska, H., Sambade, M.J., Agrawal, S. & Kole, R. Repair of thalassemic human β-globin mRNA in mammalian cells by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 93, 12840–12844 (1996).

    Article  CAS  Google Scholar 

  18. Mir, L.M., Bureau, M.F., Rangara, R., Schwartz, B. & Scherman, D. Long-term, high level in vivo gene expression after electric pulse-mediated gene transfer into skeletal muscle. C.R. Acad. Sci. III 321, 893– 899 (1998).

    Article  CAS  Google Scholar 

  19. Mir, L. et al. High efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl. Acad. Sci. USA 96, 4262–4267 (1999).

    Article  CAS  Google Scholar 

  20. Stein, C.A. Does antisense exist? Nat. Med. 1, 1119– 1121 (1995).

    Article  CAS  Google Scholar 

  21. Flanagan, W.M. Antisense comes of age. Cancer Metastasis Rev. 17, 169–176 (1998).

    Article  CAS  Google Scholar 

  22. Condon, T.P. & Bennett, C.F. Altered mRNA splicing and inhibition of human E-selectin expression by an antisense oligonucleotide in human umbilical vein endothelial cells. J. Biol. Chem. 271, 30398–30403 (1996).

    Article  CAS  Google Scholar 

  23. Giles, R.V., Spiller, D.G., Clark, R.E. & Tidd, M.D. Antisense morpholino oligonucleotide analog induces missplicing of C-myc mRNA. Antisense Nucleic Acid Drug Dev. 9, 213–220 (1999).

    Article  CAS  Google Scholar 

  24. Hawley, P., Nelson, J.S., Fearon, K.L., Zon, G. & Gibson, I. Comparison of binding of N3′-P5' phosphoramidate and phosphorothioate oligonucleotides to cell surface proteins of cultured cells. Antisense Nucleic Acid Drug Dev. 9, 61–69 (1999).

    Article  CAS  Google Scholar 

  25. Testa, S.M., Gryaznov, S.M. & Turner, D.H. In vitro suicide inhibition of self-splicing of a group I intron from Pneumocystis carinii by an N3′-P5′ phosphoramidate hexanucleotide. Proc. Natl. Acad. Sci. USA 96, 2734–2739 (1999).

    Article  CAS  Google Scholar 

  26. Kang, S.H., Cho, M.J. & Kole, R. Up-regulation of luciferase gene expression with antisense oligognucleotides: implications and applications in functional assay development . Biochemistry 37, 6235– 6239 (1998).

    Article  CAS  Google Scholar 

  27. Taylor, J.K., Zhang, Q.Q., Wyatt, J.R. & Dean, N.M. Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat. Biotechnol. 17, 1097–1100 (1999).

    Article  CAS  Google Scholar 

  28. Schmajuk, G., Sierakowska, H. & Kole, R. Antisense oligonucleotides with different backbones. Modification of splicing pathways and efficacy of uptake. J. Biol. Chem. 274, 21783–21789 ( 1999).

    Article  CAS  Google Scholar 

  29. McCurdy, S.N., Nelson, J.S., Hirschbein, B.L. & Fearon, K.L. An improved method for the synthesis of N3′-P5′ phosphoramidate oligonucleotides. Tetrahedr. Lett. 38, 207–210 (1997).

    Article  CAS  Google Scholar 

  30. Nelson, J.S. et al. N3′-P5′ oligodeoxynucleotide phosphoramidates: a new method of synthesis based on a phosphoramidite amine-exchange reaction . J. Org. Chem. 62, 7278– 7287 (1997).

    Article  CAS  Google Scholar 

  31. Fearon, K.L. et al. An improved synthesis of oligodeoxynucleotide N3′-P5' phosphoramidates and their chimera using hindered phosphoramidite monomers and a novel handle for reverse phase purification. Nucleic Acids Res. 26, 3813–3824 ( 1998).

    Article  CAS  Google Scholar 

  32. Petrie, C.R., Reed, M.W., Adams, A.D. & Meyer, R.B. An improved CPG support for the synthesis of 3′-amine-tailed oligonucleotides. Bioconjug. Chem. 3, 85–87 (1992).

    Article  CAS  Google Scholar 

  33. Charneau, P., Alizon, M. & Clavel, F. A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J. Virol. 66, 2814–2820 ( 1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Giles, R.V., Grzybowski, J., Spiller, D.G. & Tidd, D.M. Enhanced antisense effects resulting from an improved streptolysin-O protocol for oligodeoxynucleotide delivery into human leukaemia cells. Nucleosides Nucleotides 16, 1155–1163 (1997).

    Article  CAS  Google Scholar 

  35. Spiller, D.G. et al. The influence of target protein half-life on the effectiveness of antisense oligonucleotide analog-mediated biologic responses. Antisense Nucleic Acid Drug Dev. 8, 281– 293 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank R.V. Giles and C.J. Ruddell for helpful technical assistance and discussions, A. Winter for generation of stable cell lines, G. Juslin for technical expertise in in vivo experiments. We thank S. Gryaznov, D. Lloyd, and J.K. Chen for providing the first samples of oligophosphoramidates employing the oxidative phosphorylation chemistry, and L. DeDionisio and A. Raible for many of the phosphoramidate syntheses by the phosphoramidite amine-exchange methods. This work was supported by Agence Nationale de Recherche sur le Sida, and Centre International des Etudiants et Stagiaires. M.F. is supported by Coordenaçao de Aperfeicoamento de Pessoal de nivel Superior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carine Giovannangeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faria, M., Spiller, D., Dubertret, C. et al. Phosphoramidate oligonucleotides as potent antisense molecules in cells and in vivo. Nat Biotechnol 19, 40–44 (2001). https://doi.org/10.1038/83489

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing