Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced major histocompatibility complex class I-dependent presentation of antigens modified with cationic and fusogenic peptides

Abstract

Soluble extracellular protein antigens are notoriously poor stimulators of CD8+ cytotoxic T-lymphocyte (CTL) responses, largely because these antigens have inefficient access to an endogenous cytosolic pathway of the major histocompatibility complex (MHC) class I–dependent antigen presentation. Here, we present a strategy that facilitates antigen penetration into the cytosol of antigen-presenting cells (APC) by addition to the antigen of charge-modifying peptide sequences. As a result of this intervention, the charge modification enhances antigen uptake into APC by counteracting the repulsive cell surface charge, and then endosomal membranes are disrupted with a subsequent release of antigen into the cytosol. This technology significantly improves MHC class I–dependent antigen presentation to CTL, enabling a more efficient generation of specific CTL immunity in vivo. The strategy described here has potential for use in developing efficient vaccines for antigen-specific immunotherapy of human malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Responses of IL-2 secreting mouse T-cell hybridoma B3Z to various forms of OVA presented by the syngeneic APC.
Figure 2: Responses of T-cell hybridoma B3Z to the EL-4 APC pre-pulsed with modified OVA at the indicated antigen concentrations.
Figure 3: Responses of T-cell hybridoma B3Z to the syngeneic splenic DC pre-pulsed with indicated antigen preparations.
Figure 4: Class I-restricted OVA-specific CTL responses of mice pre-immunized with superactivated DC pre-pulsed with the indicated antigen.

Similar content being viewed by others

References

  1. Gotch, F., Rothbard, J., Howland, K., Townsend, A. & McMichael, A. Cytotoxic T lymphocytes recognize a fragment of influenza virus matrix protein in association with HLA-A2. Nature 326, 881–882 ( 1987).

    Article  CAS  PubMed  Google Scholar 

  2. Babbitt, B., Allen, P.M., Matsueda, G., Haber, E. & Unanue, E.R. Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 317, 359–361 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Germain, R.N. The biochemistry and cell biology of antigen presentation by MHC class I and class II molecules. Implications for development of combination vaccines. Ann. NY Acad. Sci. 754, 114–125 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Heemels, M.T. & Ploegh, H. Generation, translocation, and presentation of MHC class I-restricted peptides. Annu. Rev. Biochem. 64, 463–491 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  5. Cresswell, P. Assembly, transport, and function of MHC class II molecules. Annu. Rev. Immunol. 12, 259–293 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Braciale, T.J. et al. Antigen presentation pathways to class I and class II MHC-restricted T lymphocytes., Immunol. Rev. 98, 95– 114 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Nijman, H.W. et al. Antigen capture and major histocompatibility class II compartments of freshly isolated and cultured human blood dendritic cells. J. Exp. Med. 182, 163–174 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Koch, F. et al. Antigen processing in populations of mature murine dendritic cells is caused by subsets of incompletely matured cells. J. Immunol. 155, 93–100 (1995).

    CAS  PubMed  Google Scholar 

  9. Ridge, J.P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Midoux et al. Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells. Nucleic Acids Res. 21, 871–878 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Plank, C., Oberhauser, B., Mechtler, K., Koch, C. & Wagner, E. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer system . J. Biol. Chem. 269, 12918– 12924 (1994).

    CAS  PubMed  Google Scholar 

  12. Jameson, S.C., Carbone, F.R. & Bevan M.J. Clone-specific T cell receptor antagonists of major histocompatibility complex class I-restricted cytotoxic T cells. J. Exp. Med. 177, 1541–1550 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Brossart, P., Goldrath, A.W., Butz, E.A., Martin, S. & Bevan, M.J. Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. J. Immunol. 158, 3270–3276 ( 1997).

    CAS  PubMed  Google Scholar 

  14. Akiyama, T., Sudo, C., Ogawara, H., Toyoshima, K. & Yamamoto, T. The product of the human c-erbB-2 gene: a 185-kilodalton glycoprotein with tyrosine kinase activity. Science 232, 1644–1646 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  15. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naïve and effector T cells. Immunity 8 , 89–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, D.T. et al. Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide. J. Immunol. 159, 1666–1668 (1997).

    CAS  PubMed  Google Scholar 

  17. Greenberg, P.D. Adoptive T cell therapy of tumors: mechanism operative in the recognition and elimination of tumor cells. Adv. Immunol. 49, 281–355 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Kruisbeek A.M. In Current protocols in immunology, Vol. 1 (eds Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W.) 3.14.1–3.14.11 (Wiley, New York; 1998 ).

    Google Scholar 

  19. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1989 ).

    Google Scholar 

  20. Czerniecki, B.J. et al. Calcium ionophore treated peripheral blood monocytes and dendritic cells rapidly display characteristics of activated dendritic cells. J. Immunol. 159, 3823–3837 (1997).

    CAS  PubMed  Google Scholar 

  21. Wunderlich, J. & Shearer, G. In Current protocols in immunology, Vol. 1 (eds Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W.) 3.11.1– 3.11.20 (Wiley, New York; 1998).

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. David Urdal for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damir Vidovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laus, R., Graddis, T., Hakim, I. et al. Enhanced major histocompatibility complex class I-dependent presentation of antigens modified with cationic and fusogenic peptides. Nat Biotechnol 18, 1269–1272 (2000). https://doi.org/10.1038/82377

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82377

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing